Please show picture of diagrams
Answer:
(4) weight
Explanation:
The centripetal force acting on the space shuttle in orbit is given by:

where
m is the mass of the shuttle
v is the tangential speed of the shuttle
r is the radius of its circular orbit
When the shuttle orbits the Earth, the centripetal force that keeps the shuttle in circular motion is given by the gravitational attraction between the shuttle and the Earth, which corresponds to the weight of the shuttle, and it is given by:

where
G is the gravitational constant
M is the Earth's mass
And this force, therefore, corresponds to the centripetal force.
From the law of conservation of momentum
m1u1+ m2u2= m1v1+ m2v2
110*8+ 110*-10= 110*-10 + 110* v2
v2= 8 m/sec
Earth's gravity and the satellite's velocity keeps it so that it stays in orbit. (there is a more complicated side, too...)
Answer:
(a) Heat transfer to the environment is: 1 MJ and (b) The efficiency of the engine is: 41.5%
Explanation:
Using the formula that relate heat and work from the thermodynamic theory as:
solving to Q_out we get:
this is the heat out of the cycle or engine, so it will be heat transfer to the environment. The thermal efficiency of a Carnot cycle gives us:
where T_Low is the lowest cycle temperature and T_High the highest, we need to remember that a Carnot cycle depends only on the absolute temperatures, if you remember the convertion of K=°C+273.15 so T_Low=150+273.15=423.15 K and T_High=450+273.15=723.15K and replacing the values in the equation we get: