Answer:
0.01M = [H⁺]; 1x10⁻¹²M = [OH⁻]; Ratio is: 1x10¹⁰
Explanation:
pH is defined as -log [H⁺]
For a pH of 2 we can solve [H⁺] as follows:
pH = -log [H⁺]
2 = -log [H⁺]
10^-2 = [H⁺]
<h3>0.01M = [H⁺]</h3>
Using Keq of water:
Keq = 1x10⁻¹⁴ = [H⁺] [OH⁻]
1x10⁻¹⁴ / 0.01M = [OH⁻]
<h3>1x10⁻¹²M = [OH⁻]</h3><h3 />
The ratio is:
[H⁺] / [OH⁻] = 0.01 / 1x10⁻¹² =
<h3>1x10¹⁰</h3>
Answer:
Explanation:
Sodium:
Na₁₁ = 1s² 2s² 2p⁶ 3s¹
Iron:
Fe₂₆= 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶
Bromine:
Br₃₅ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁵
Barium:
Ba₅₆ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s²
Cobalt:
Co₂₇ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷
Silver:
Ag₄₇ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹ 4d¹⁰
Tellurium:
Te₅₂= 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁴
Radium:
Ra₈₈ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² 4f¹⁴ 5d¹⁰ 6p⁶ 7s²
Answer:
condensing water
Explanation:
Entropy refers to the level of disorderliness in a system. The entropy of liquids is greater than that of solids. The entropy of gases is greater than that of liquids.
A process of physical change involving a change of state from solid to liquid or liquid to gas is accompanied by increase in entropy.
However, a change of state involving a change from liquid to solid or gas to liquid is accompanied by decrease in entropy.
Hence, steam condensing to water leads to decrease and not increase in entropy of the system.
Answer:
Hydrogen Bonding
Explanation:
Hydrogen bonding occurs between the positive dipole of one water molecule with the negative dipole of another. It is an intermolecular force that gives water its unique properties such as: high boiling point, high specific heat, cohesion, adhesion, and density.