Answer:
The correct answer is <em>It is a ratio of the concentrations in a reaction.</em>
Explanation:
⇒ It is a ratio of the concentrations in a reaction.
This sentence is true because the equilibrium constant is calculated from the product of the concentration of the reaction products divided into the product of the concentrations of the reactants, each concentration raised by the stoichiometric coefficient. For example, for the following reaction:
aA + bB → cC + dD
The equilibrium constant is expressed as:
![K = \frac{[C]^{c}[D]^{d} }{[A]^{a} [B]^{b} }](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5BC%5D%5E%7Bc%7D%5BD%5D%5E%7Bd%7D%20%20%7D%7B%5BA%5D%5E%7Ba%7D%20%5BB%5D%5E%7Bb%7D%20%7D)
⇒ It remains the same at different temperatures.
The sentence is false because the equilibrium constant changes with the temperature. In general, an endothermic reaction is favored by the increment of temperature (the equilibrium shifts to the right side) and disfavored with the decrease in temperature (shifts to the left).
⇒ It is represented by the symbol H.
This sentence is false because the equilibrium constant is represented with the letter K.
⇒ Its value is always close to 1.
It is not true because the equilibrium constant can be a number below or above 1.
K < 1 ⇒ there is more concentration of reactants at equilibrium
K > 1 ⇒ there is more concentration of products at equilibrium
The solubility of nitrogen gas in water is 1.90 mL/dL at 1.00 atm and 13.3 mL/dL at 7.00 atm.
We want to relate the solubility of a gas with its partial pressure.
We can do so using Henry's law.
<h3>What does Henry's law state?</h3>
Henry's law states that the amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid.
C = k × P
where,
- C is the concentration of a dissolved gas.
- k is the Henry's Law constant.
- P partial pressure of the gas.
The solubility of nitrogen gas is 1.90 mL/dL of blood at 1.00 atm.
Since the solvent is basically water, we can understand that the concentration of nitrogen gas is 1.90 mL/dL at 1.00 atm.
We can use this information to calculate Henry's Law constant.
k = C/P = (1.90 mL/dL)/1.00 atm = 1.90 mL/dL.atm
We want to calculate the solubility of nitrogen gas at a pressure of 7.00 atm.
We will use Henry's law.
C = k × P = (1.90 mL/dL.atm) × 7.00 atm = 13.3 mL/dL
The solubility of nitrogen gas in water is 1.90 mL/dL at 1.00 atm and 13.3 mL/dL at 7.00 atm.
Learn more about solubility here: brainly.com/question/11963573
Rutherford's model didn't not account for the properties of electrons. bohr placed electrons in layers of orbit so C
Answer:
C
Explanation:
Unicellular algae can't do photosynthesis because it is a single cell organisms, therefore the answer is C
Answer:
Molality = 18.5 m
Explanation:
Let's analyse data. We want to determine molality which means mol of solute / 1kg of solvent. (Hence we need, the moles of solute and the mass of solvent in kg)
12.83 M means molarity → mol of solute in 1L of solution
Density refers always to solution → Mass of solution / Volume of solution
1L = 1000 mL
We can determine the mass of solution with density
0.9102 g/mL = Mass of solution / 1000 mL
Mass of solution = 0.9102 g/mL . 1000 mL → 910.2 g
Let's convert the moles of solute (NH₃) to mass
12.83 mol . 17.03 g/ 1 mol = 218.5 g
We can apply this knowledge:
Mass of solution = Mass of solvent + Mass of solute
910.2 g = Mass of solvent + 218.5 g
910.2 g - 218.5 g = 691.7 g → Mass of solvent.
Let's convert the mass in g to kg
691.7 g . 1kg / 1000 g = 0.6917kg
We can determine molalilty now → 12.83 mol / 0.6917kg
Molality = 18.5 m