Explanation:
Regulate body temperature in the extremes of space. maybe
because 72:96 is an equivalent of 12:16 and that if you multiply 12 times 6 you get 72 and if you multiply 16 by 6 you get 96
<em>They mostly occur at boundaries between tectonic plates. They can also be found by a belt called the "Ring of Fire" that encircles the Pacific Ocean. Volcanoes like that can be formed in Hawaii Islands in the part of the interior plate. These areas are known for being called the "hot spots." </em>
<em>I wrote this in my own words but furthermore, I have no idea what you're looking for so please be in mind telling me what you're looking for the next time.</em>
Answer:
Alright, the first thing we have to do is to balance the chemical equation
2Na3N -----> 6Na + 1N2
We have 60g of Na3N, we convert them into moles by dividing the mass of the compound by the molar mass.
Molar mass of Na3N = (22.98 x 3) + (14) = 82.94g/mol
<u>60</u> = 0.72341451651 moles of Na3N
82.94
Now because we did the balanced equation, we know the mole to mole ratio of Na3N to N2 would be 2:1, so in order to get the moles of N2 you have to divide the moles of Na3N by 2
0.72341451651 moles/2 = 0.361707258 moles of N2
Now that we have the moles of N2, we just have to determine the mass of it in grams. In order to do that, just multiply the moles by the molar mass of N2 (28g/mol)
0.361707258 x 28 = <u>10.13g of N2</u>
<u>Therefore the decomposition of 60g of Na3N would result in 10.13g of N2 (nitrogen gas)</u>
The molar volume, symbol Vm<span>, is the </span>volume occupied by one mole of a substance at a given temperature and pressure. <span>It is equal to the </span>molar<span> mass divided by the mass density. Therefore, we calculate as follows:
Vm(CO2) = 44.01 / 1.56 = 28.21 cm^3 / mol
</span>Vm(NH3) = 17.03 / 0.84 = 20.27 cm^3 / mol