To answer the problem above first we need to find the difference of molar mass of NI3 from I2, 394.71 g/mol - 253.80 g/mol = 140.91 g/mol. Knowing the molar mass of the difference of NI3 from I2, in equation mass (g) / moles (mol) = molar mass, then we substitute. 3.58g / moles = 140.91 g/mol.
moles = 3.58 / 140.91 = 0.025 moles.
To determine the empirical formula and the molecular formula of the compound, we assume a basis of the compound of 100 g. We do as follows:
Mass Moles
K 52.10 52.10/39.10 = 1.33 1.33/1.32 ≈ 1
C 15.8 15.8/12 = 1.32 1.32/1.32 ≈ 1
O 32.1 32.1 / 16 = 2.01 2.01/1.32 ≈ 1.5
The empirical formula would most likely be KCO.
The molecular formula would be K2C2O3.
Answer is: the atom is the smallest known particle of matter.
John Dalton claimed that atom is indestructible and a<span>ll atoms of a given element are identical in mass and properties.
</span>Thomson discovered electron and found the first evidence for isotopes<span> of a stable element.</span>
Answer:
a) The element is Manganese (Mn)
b) The element is Zirconium (Zr)
Explanation:
The step by step analysis and explanation is as shown in the attachment
1) since we are given percentages, we can assume we have 100 grams of the molecule.
55.6 % Cu ----> 55.6 grams Cu
16.4 % Fe------> 16.4 grams Fe
28.0% S--------> 28.0 grams S
2) convert each gram to moles using the molar masses given



3) we divide the smallest value of moles (0.293) to each one.
Cu --> 0.876 / 0.293= 3
Fe---> 0.293 / 0.293= 1
S-----> 0.875 / 0.293= 3
4) let's write the empirical formula
Cu₃FeS₃