Answer:
When an atom attracts extra electrons it becomes a negative ion. The negative ion is larger than the original atom. The positive nucleus remains the same, with the same attractive force. However, this attractive force is now pulling on more electrons and therefore has less effect.
Or
Positive ions are formed by removing one or more electrons from the outermost region of the atom. The opposite is true of negative ions. When electrons are added to form an anion, the increased electron-electron repulsions cause the electrons to spread out more in space. Thus, anions are larger than their parent atoms.
Answer:
2H⁺(aq) + 2OH⁻(aq) --> 2H2O(l)
Explanation:
2HBr(aq)+Ba(OH)2(aq)⟶2H2O(l)+BaBr2(aq)
We break the compounds into ions. Only compounds in the aqueous form can be turned into ions.
The ionic equation is given as;
2H⁺(aq) + 2Br⁻(aq) + Ba²⁺(aq) + 2OH⁻(aq) --> 2H2O(l) + Ba²⁺(aq) + 2Br⁻(aq)
Upon eliminating the spectator ions; The net equation is given as;
2H⁺(aq) + 2OH⁻(aq) --> 2H2O(l)
The rate of a reaction would be one-fourth.
<h3>Further explanation</h3>
Given
Rate law-r₁ = k [NO]²[H2]
Required
The rate of a reaction
Solution
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
Can be formulated:
Reaction: aA ---> bB

or

The concentration of NO were halved, so the rate :
![\tt r_2=k[\dfrac{1}{2}No]^2[H_2]\\\\r_2=\dfrac{1}{4}k.[No]^2[H_2]\\\\r_2=\dfrac{1}{4}r_1](https://tex.z-dn.net/?f=%5Ctt%20r_2%3Dk%5B%5Cdfrac%7B1%7D%7B2%7DNo%5D%5E2%5BH_2%5D%5C%5C%5C%5Cr_2%3D%5Cdfrac%7B1%7D%7B4%7Dk.%5BNo%5D%5E2%5BH_2%5D%5C%5C%5C%5Cr_2%3D%5Cdfrac%7B1%7D%7B4%7Dr_1)
The reaction involved in this problem is called the combustion reaction where a hydrocarbon reacts with oxygen to product carbon dioxide and water. The reaction of C2H5OH would be as follows:
C2H5OH + 3O2 = 2CO2 + 3H2O
To determine the number of molecules of CO2 that is formed, we need to determine the number of moles produced from the initial amount of C2H5OH and the relation from the reaction. Then we multiply avogadros number which is equal to 6.022x10^23 molecules per mole.
2.00 g C2H5OH ( 1 mol C2H5OH / 46.08 g C2H5OH ) ( 2 mol CO2 / 1 mol C2H5OH ) = 0.0868 mol CO2
0.0868 mol CO2 ( 6.022x10^23 molecules / mol ) = 5.23x10^22 molecules CO2
Cation - Cr 4+
Anion - S ^ 2-
Chromium sulfide
(: