Biodiversity has a fundamental value to humans because we are so dependent on it for our cultural, economic, and environmental well-being. Some argue that it is our moral responsibility to preserve the Earth’s incredible diversity for the next generation. Others simply like knowing that nature’s great diversity exists and that the opportunity to utilize it later, if need be, is secure. Scientists value biodiversity because it offers clues about natural systems that we are still trying to understand. Arguably, the greatest value to humans, however, comes from the ?ecosystem services? it provides.
Biodiversity forms the backbone of viable ecosystems on which we depend on for basic necessities, security, and health. By breaking down plant and animal matter, for example, insects and other invertebrates make nutrients available to plants and are integral to the carbon and nitrogen cycles. Other species pollinate crops, an essential service for farmers. Healthy ecosystems can mitigate or prevent flooding, erosion, and other natural disasters. These ecosystem services also play a hand in the functioning of our climate and in both air and water quality.
Explanation:
Two events involving electrons are gain and loss of electrons.
When there is gain or loss of electrons between two atoms then it results in the formation of ionic bond.
Whereas when there is sharing of electrons between two atoms then it results in the formation of covalent bond.
Therefore, the chemical bonds formed can be ionic or covalent bonds.
Answer:
HBr(aq) + LiOH(aq) → LiBr(aq) + H2O(l)
Explanation:
A neutralization reaction is a process in which an acid, aqeous HBr reacts completely with an appropriate amount of base, aqueous LiOH to produce salt, aqueous LiBr and water, liquid H2O only.
HBr(aq) + LiOH(aq) → LiBr(aq) + H2O(l)
Acid + base → Salt + Water.
During this reaction, the hydrogen ion, H+, from the HBr is neutralized by the hydroxide ion, OH-, from the LiOH to form the water molecule, H2O.
Thus, it is called a neutralization reaction.
Let initially there are 10 molecules of O2 and 3 molecules of C3H8 present
The reaction will be
C3H8(g) + 5O2(g) ----> 3CO2(g) + 4H2O
so here oxygen molecules are limiting as for 3 molecules of C3H8 we need 15 molecules of O2
now the given 10 molecules of O2 will react with only 2 molecules of C3H8 and they will form six molecules of CO2 and 8 molecules of H2O
Hence answer is
molecules of CO2 formed = 6
Molecules of H2O formed = 8
molecules of C3H8 left = 1
molecules of O2 left = 0