The answer to this question would be: alkaline earth metal
Alkali earth metal is the second column group of the periodic table. In this group, the element has 2 extra electrons in their outer cells. That is why most of this metal has 2+ charge.
Their neighbor is the alkali metal which was the first column of the periodic table. The name is similar so don't confused and mix them each other.
Answer:
magnitude means absolute value, so the one that is greastest, like |-7| and |4| even id |-7| is a negative number, but it is still the one farthest away from 0, so |-7| is greater than |4|.
That is the way to find the greatest magnitude, but because I don't know your numbers so I can not answer your question, but this is the way to solve for it.
HOPE THIS HELPS!!!!!!!!!( IF IT DOES <u><em>PLEASE MARK ME AS BRAINLIEST )</em></u>
Answer:
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Explanation:
Step 1: Given data
The supercritical CO2 has a density of 0.469 g/cm³ (or 0.469 g/mL)
The sample hasa volume of 25.0 mL
Step 2: Calculating mass of the sample
The density is the mass per amount of volume
0.469g/cm³ = 0.469g/ml
The mass for a sample of 25.0 mL = 0.469g/mL * 25.0 mL = 11.725g ≈ 11.7g
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
The oxidation is occurring on Calcium ions as it release one electron and reduction will be occurring on fluorine ion as it accepts one electron.
<u>Explanation:</u>
An element will undergo oxidation and form a positive ion on releasing one or more electrons from its valence shell. While reduction is occurred in a chemical reaction, then the element will be forming a negative ion with the acceptance of one or more electrons in its valence shell.
So in the given process of calcium fluoride, the one electron from the valence shell of calcium will be released making it as
ions and this is termed as oxidation process. This one electron will be getting accepted by the fluorine ion and thus it will convert to
ions. This process of acceptance of electrons is termed as reduction.
A flood, if it hits the environment of the natural rubbers, would destroy how the rubber is being produced. to have a large amount of limitation, the flood would destroy a large percentage of rubber trees. This natural rubber is needed to make synthetic polymers. Without the rubber (because of damages to it's ecosystem through the flood), there would be a limited supply, and a substancial drop on synthetic polymers.
hope this helps