Newton's first law of motion states that an object at rest will remain at rest unless an unbalanced force acts on it. If you apply balanced forces on the object there would be no net force. The body does not accelerate but instead stays at rest.
Another way to look at this problem is to use Newton's second law of motion. The first law states that
, where
is the acceleration
is the net force and
is the mass of the object.
When F is zero, the acceleration of the object is zero. This means that if the object had a velocity of zero before the balanced forces started acting, the velocity will stay at zero after the balanced forces begin to act. If the object was moving at a constant velocity before the balanced forces started acting on it, it would continue at that constant velocity after the balanced forces begin to act.
Answer:
The equilibrium constant in terms of concentration that is,
.
Explanation:

The relation of
is given by:

= Equilibrium constant in terms of partial pressure.=98.1
= Equilibrium constant in terms of concentration =?
T = temperature at which the equilibrium reaction is taking place.
R = universal gas constant
= Difference between gaseous moles on product side and reactant side=



The equilibrium constant in terms of concentration that is,
.
Answer:
LED bulbs fit standard light sockets and are the most energy-efficient option. LEDs have lower wattage than incandescent bulbs but emit the same light output. This allows them to produce the same amount of light but use less energy. LEDs can last over 20 years and don't contain mercury
Answer:
0.08 g
Explanation:
100.0 mL = 0.10 L
Multiply the volume by the molarity to find moles.
0.10 L × 0.20 M = 0.002 mol
Convert moles to grams.
0.002 mol × 40 g/mol = 0.08 g
Answer:
Acids are water-soluble and acidic chemical compounds, often expressed as the general formula HₓA.