Answer:
We need 10.14 grams of sodium bromide to make a 0.730 M solution
Explanation:
Step 1: Data given
Molarity of the sodium bromide (NaBr) = 0.730 M
Volume of the sodium bromide solution = 135 mL = 0.135 L
Molar mass sodium bromide (NaBr) = 102.89 g/mol
Step 2: Calculate moles NaBr
Moles NaBr = Molarity NaBr * volume NaBr
Moles NaBr = 0.730 M * 0.135 L
Moles NaBr = 0.09855 moles
Step 3: Calculate mass of NaBr
Mass NaBr = 0.09855 moles * 102.89 g/mol
Mass NaBr = 10.14 grams
We need 10.14 grams of sodium bromide to make a 0.730 M solution
43.8 has 3 significant figures and 1 decimal.
<h3 /><h3>What are significant figures?</h3>
The term significant figures refer to the number of important single digits (0 through 9 inclusive) in the coefficient of an expression in scientific notation.
All zeros that occur between any two non-zero digits are significant. For example, 108.0097 contains seven significant digits. All zeros that are on the right of a decimal point and also to the left of a non-zero digit are never significant. For example, 0.00798 contained three significant digits.
Hence, 43.8 has 3 significant figures and 1 decimal.
Learn more about significant figures here:
brainly.com/question/14359464
#SPJ1
Answer:
HCl(aq) + KOH(aq) ===> H2O(l) + KCl(aq)
Note the stoichiometry of the balanced equations shows us that HCl and KOH react in a 1:1 mole ratio. So, let us find moles of HCl and moles of KOH that are present:
moles HCl = 250.0 ml x 1 L/1000 ml x 0.25 mol/L = 0.06250 moles HCl
moles KOH = 200.0 ml x 1 L/1000 ml x 0.40 mol/L = 0.0800 moles KOH
You can see that there are more moles of KOH than there are of HCl, meaning that KOH is in excess and after neutralizing all of the HCl, the solution will be left with excess KOH making the pH > 7 = BASIC
Answer:
c.
Explanation:
If the object starts to slide it must be on a slope.
There are 2 forces acting on the object - gravity and the friction between the object and the surface.
If sliding starts then the forces must be unbalanced.
The force of gravity is greater than the friction.