Answer:
This does not violate the conservation of energy.
Explanation:
This does not violate the conservation of energy because the hot body gives energy in the form of heat to the colder body, this second absorbs energy. This will be the case until both bodies reach the same temperature, reaching thermal equilibrium and reducing the transfer of thermal energy. In this way the energy was only transferred from one body to another but the total energy of the system (body 1 plus body 2) will be the same as in the beginning, respecting the principle of conservation of energy or also called the first principle of thermodynamics .
The part of physics that studies these processes is in turn called heat transfer or heat transfer or thermal transfer. Heat transfer occurs whenever there is a thermal gradient or when two systems with different temperatures come into contact. The process persists until thermal equilibrium is reached, that is, until temperatures are equalized. When there is a temperature difference between two objects or regions close enough, the heat transfer cannot be stopped, it can only be slowed down.
Answer:
The answer is: measuring instrument
Explanation:
The researcher develops test to measure the variables she is interested in. So, they are her measuring instrument.
Answer:
We conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.
Explanation:
Given
To determine
Mass m = ?
Important Tip:
-
The mass of a rock can be found using the formula F = ma
Using the formula

where
- a is the acceleration (m/s²)
now substituting F = 500, and a = 75 m/s² in the formula


switch sides

Divide both sides by 75

simplify

kg
Therefore, we conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.
Answer:
1.67m
5m/s
Explanation:
Wavelength of the wave = 3m
Speed of the wave = 5m/s
The distance between crest and the adjacent trough of water waves is known as the wavelength of a wave.
To find the frequency ;
V = f∧
V is the speed of the wave
f is the frequency
∧ is the wavelength
Insert the parameters and find the frequency;
f = V/ ∧ = 5 / 3 = 1.67Hz
The rate at which the wave passed a given point is the speed of the wave and it is 5m/s