They expend more oxygen. Littler endotherms lose warmth to the earth proportionately speedier than huge endotherms: less warm mass, protecting layers in littler creatures are less successful by dint of being more slender, and more prominent surface region to volume proportion implies snappier radiation of warmth
B. Maximal lightheadedness
Hola!
Percentage Error is a measurement of the discrepancy between an observed and a true, or accepted value.
[ refer the attachment. ]
According to Question,
% error =

× 100
= 2.631 % = 2.7 % (approximately.)
hope it helps!
Answer:

Explanation:
We know that charge on electron

r= 2 nm
We know that force between two charge given

Now by putting the value


We know that mass of electron
The mass of electron

F= m a
a= Acceleration of electron
a= F/m


initial velocity given that zero ,u=0

