Answer:
y = 2/3x - 1
Step-by-step explanation:
The simpliest way to determine the slope of the line is to see the rise over run of the line. In this case, we are given two points which are at (0, -1) and (3,1)
By calculating rise of run, we can see that the starting point goes up by 2 units, from -1 to 1 and goes to the right 3 units, from 0 to 3
In this case, that means we have a slope of 2/3x.
The +b plays into the y-intercept of the line, which is actually the same of one of our points: (0,-1)
Since this number is a negative, it would actually be y = (2/3)x + (-1) which is the same as y=2/3x - 1

now, for a rational expression, the domain, or "values that x can safely take", applies to the denominator NOT becoming 0, because if the denominator is 0, then the rational turns to
undefined.
now, what value of "x" makes this denominator turn to 0, let's check by setting it to 0 then.
![\bf 2-x^{12}=0\implies 2=x^{12}\implies \pm\sqrt[12]{2}=x\\\\ -------------------------------\\\\ \cfrac{x^2-9}{2-x^{12}}\qquad \boxed{x=\pm \sqrt[12]{2}}\qquad \cfrac{x^2-9}{2-(\pm\sqrt[12]{2})^{12}}\implies \cfrac{x^2-9}{2-\boxed{2}}\implies \stackrel{und efined}{\cfrac{x^2-9}{0}}](https://tex.z-dn.net/?f=%5Cbf%202-x%5E%7B12%7D%3D0%5Cimplies%202%3Dx%5E%7B12%7D%5Cimplies%20%5Cpm%5Csqrt%5B12%5D%7B2%7D%3Dx%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A%5Ccfrac%7Bx%5E2-9%7D%7B2-x%5E%7B12%7D%7D%5Cqquad%20%5Cboxed%7Bx%3D%5Cpm%20%5Csqrt%5B12%5D%7B2%7D%7D%5Cqquad%20%5Ccfrac%7Bx%5E2-9%7D%7B2-%28%5Cpm%5Csqrt%5B12%5D%7B2%7D%29%5E%7B12%7D%7D%5Cimplies%20%5Ccfrac%7Bx%5E2-9%7D%7B2-%5Cboxed%7B2%7D%7D%5Cimplies%20%5Cstackrel%7Bund%20efined%7D%7B%5Ccfrac%7Bx%5E2-9%7D%7B0%7D%7D)
so, the domain is all real numbers EXCEPT that one.
Answer:
C. y = 600x + 2200
Step-by-step explanation:
2800-2200 = 600 = slope
2200 (y value) has the x value 0, so 2200 is the y-inercept
hope this helps :)