Answer:
Verified
Step-by-step explanation:
Question:-
- We are given the following non-homogeneous ODE as follows:
- A general solution to the above ODE is also given as:
- We are to prove that every member of the family of curves defined by the above given function ( y ) is indeed a solution to the given ODE.
Solution:-
- To determine the validity of the solution we will first compute the first derivative of the given function ( y ) as follows. Apply the quotient rule.
- Now we will plug in the evaluated first derivative ( y' ) and function ( y ) into the given ODE and prove that right hand side is equal to the left hand side of the equality as follows:
- The equality holds true for all values of " C "; hence, the function ( y ) is the general solution to the given ODE.
- To determine the complete solution subjected to the initial conditions y (1) = 3. We would need the evaluate the value of constant ( C ) such that the solution ( y ) is satisfied as follows:
- Therefore, the complete solution to the given ODE can be expressed as:
- To determine the complete solution subjected to the initial conditions y (3) = 1. We would need the evaluate the value of constant ( C ) such that the solution ( y ) is satisfied as follows:
- Therefore, the complete solution to the given ODE can be expressed as:
Your answer is 1.18518519
The answer is: 2(m+1)
First combine like terms.
<em>we do 6m-4m which is 2m</em>
2m+2=?
Second we factor. We notice that both terms have 2.
2(m+1)
<em>by distributive law, the 2 is distributed to m and 1.
</em>
Answer:
The proportion of infants with birth weights between 125 oz and 140 oz is 0.1359 = 13.59%.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean and standard deviation , the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
The proportion of infants with birth weights between 125 oz and 140 oz is
This is the pvalue of Z when X = 140 subtracted by the pvalue of Z when X = 125. So
X = 140
has a pvalue of 0.9772
X = 125
has a pvalue of 0.8413
0.9772 - 0.8413 = 0.1359
The proportion of infants with birth weights between 125 oz and 140 oz is 0.1359 = 13.59%.