1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sashaice [31]
3 years ago
6

Two traveling sinusoidal waves are described by the wave functions y1 = 4.85 sin [(4.35x − 1270t)] y2 = 4.85 sin [(4.35x − 1270t

− 0.250)] where x, y1, and y2 are in meters and t is in seconds. (a) What is the amplitude of the resultant wave function y1 + y2?
Physics
1 answer:
Tamiku [17]3 years ago
8 0

Answer:

Approximately 9.62.

Explanation:

y_1 = 4.85\, \sin[(4.35\, x - 1270\, t) + 0].

y_2 = 4.85\, \sin[(4.35\, x - 1270\, t) + (-0.250)].

Notice that sine waves y_1 and y_2 share the same frequency and wavelength. The only distinction between these two waves is the (-0.250) in y_2\!.

Therefore, the sum (y_1 + y_2) would still be a sine wave. The amplitude of (y_1 + y_2)\! could be found without using calculus.

Consider the sum-of-angle identity for sine:

\sin(a + b) = \sin(a) \cdot \cos(b) + \cos(a) \cdot \sin(b).

Compare the expression \sin(a + b) to y_2. Let a = (4.35\, x - 1270) and b = (-0.250). Apply the sum-of-angle identity of sine to rewrite y_2\!.

\begin{aligned}y_2 &= 4.85\, \sin[(\underbrace{4.35\, x - 1270\, t}_{a}) + (\underbrace{-0.250}_{b})]\\ &= 4.85 \, [\sin(4.35\, x - 1270\, t)\cdot \cos(-0.250) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}.

Therefore, the sum (y_1 + y_2) would become:

\begin{aligned}& y_1 + y_2\\[0.5em] &= 4.85\, [\sin(4.35\, x - 1270\, t) \\ &\quad \quad \quad\;+\sin(4.35\, x - 1270\, t)\cdot \cos(-0.250) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \\[0.5em] &= 4.85\, [\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}.

Consider: would it be possible to find m and c that satisfy the following hypothetical equation?

\begin{aligned}& (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c)\\&= 4.85\, [\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}.

Simplify this hypothetical equation:

\begin{aligned}& m\cdot \sin((4.35\, x - 1270\, t) + c)\\&=\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)\end{aligned}.

Apply the sum-of-angle identity of sine to rewrite the left-hand side:

\begin{aligned}& m\cdot \sin((4.35\, x - 1270\, t) + c)\\[0.5em]&=m\, \sin(4.35\, x - 1270\, t)\cdot \cos(c) \\ &\quad\quad + m\, \cos(4.35\, x - 1270\, t)\cdot \sin(c) \\[0.5em] &=\sin(4.35\, x - 1270\, t)\cdot (m\, \cos(c)) \\ &\quad\quad + \cos(4.35\, x - 1270\, t)\cdot (m\, \sin(c)) \end{aligned}.

Compare this expression with the right-hand side. For this hypothetical equation to hold for all real x and t, the following should be satisfied:

\displaystyle 1 + \cos(-0.250) = m\, \cos(c), and

\displaystyle \sin(-0.250) = m\, \sin(c).

Consider the Pythagorean identity. For any real number a:

{\left(\sin(a)\right)}^{2} + {\left(\cos(a)\right)}^{2} = 1^2.

Make use of the Pythagorean identity to solve this system of equations for m. Square both sides of both equations:

\displaystyle 1 + 2\, \cos(-0.250) +  {\left(\cos(-0.250)\right)}^2= m^2\, {\left(\cos(c)\right)}^2.

\displaystyle {\left(\sin(-0.250)\right)}^{2} = m^2\, {\left(\sin(c)\right)}^2.

Take the sum of these two equations.

Left-hand side:

\begin{aligned}& 1 + 2\, \cos(-0.250) + \underbrace{{\left(\cos(-0.250)\right)}^2 + {\left(\sin(-0.250)\right)}^2}_{1}\\ &= 1 + 2\, \cos(-0.250) + 1 \\ &= 2 + 2\, \cos(-0.250) \end{aligned}.

Right-hand side:

\begin{aligned} &m^2\, {\left(\cos(c)\right)}^2 + m^2\, {\left(\sin(c)\right)}^2 \\ &= m^2\, \left( {\left(\sin(c)\right)}^2 +  {\left(\cos(c)\right)}^2\right)\\ &= m^2\end{aligned}.

Therefore:

m^2 = 2 + 2\, \cos(-0.250).

m = \sqrt{2 + 2\, \cos(-0.250)} \approx 1.98.

Substitute m = \sqrt{2 + 2\, \cos(-0.250)} back to the system to find c. However, notice that the exact value of c\! isn't required for finding the amplitude of (y_1 + y_2) = (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c).

(Side note: one possible value of c is \displaystyle \arccos\left(\frac{1 + \cos(0.250)}{\sqrt{2 \times (1 + \cos(0.250))}}\right) \approx 0.125 radians.)

As long as \! c is a real number, the amplitude of (y_1 + y_2) = (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c) would be equal to the absolute value of (4.85\, m).

Therefore, the amplitude of (y_1 + y_2) would be:

\begin{aligned}|4.85\, m| &= 4.85 \times \sqrt{2 + 2\, \cos(-0.250)} \\&\approx 9.62 \end{aligned}.

You might be interested in
Which of the following is a quantitative observation?
liubo4ka [24]

The statement that is a quantitative observation is that bird has four different colors on it (option B).

<h3>What is a quantitative research?</h3>

A quantitative research is a systematic scientific investigation of quantitative properties and phenomena and their relationships, using statistical methods.

A quantitative observation has to do with numbers or numeric analysis.

This suggests that the statement that is a quantitative observation is that bird has four different colors on it.

Learn more about quantitative observations at: brainly.com/question/1434538

#SPJ1

8 0
1 year ago
What is her initial acceleration if she is initially stationary and wearing steel-bladed skates that point in the direction of?
madreJ [45]
We will apply the Newton's second Law so the we will be able to find the acceleration.
F (tot) = ma
a = F(tot) /  m
a = 32.0 N / 65.0 kg = 0.492 m/s^2
Approximately 0.492 m/s^2 is her initial acceleration if she is initially stationary and wearing steel-bladed skates.

7 0
3 years ago
A wave traveling in water has a frequency of 500.0 Hz and a wavelength of 3.00 m. What is the speed of the wave?
Sergeu [11.5K]

Answer:

1500 m/s

Explanation:

Recall that for a wave,

Speed = frequency x wavelength

here we are given frequency = 500 Hz and wavelength = 3m

simply substitute into above equation

Speed = 500 Hz x 3m

= 1500 m/s

6 0
3 years ago
Points A (-9,2), B (2,-9), and C (-9,-9) are placed in three different quadrants of a Cartesian coordinate system. Convert each
slavikrds [6]

Answer:

answer

Explanation:

5 0
3 years ago
Our Sun is a_________ star.
aliina [53]
NAMASTE :)

HERE IS YOUR ANSWER:

Our Sun is a \boxed{high- temperature } star.
5 0
3 years ago
Read 2 more answers
Other questions:
  • Referring to the _______scale is a way to estimate the wind speed.
    14·2 answers
  • When a glass rod is rubbed with silk and becomes positively charged,
    9·1 answer
  • Why does light of a certain frequency need to be used to produce a current in the photoelectric effect?
    5·1 answer
  • A large box has a mass of 500kg and the coefficient of static friction for the box and the floor is 0.45, and the coefficient of
    7·1 answer
  • Find the acceleration that can result from a net force of 13 N exerted on a 3.6-kg cart. (Note: The unit N/kg is equivalent to m
    5·1 answer
  • One consequence of Newton's third law of motion is that __________. A. every object that has mass has inertia B. a force acting
    10·2 answers
  • Prior to determining the experimental design, a scientist typically? A. makes observations. B. forms a hypothesis. C. performs a
    10·1 answer
  • Can someone please help
    11·1 answer
  • Just need the answer
    8·1 answer
  • Two students are talking in the corridor you can hear them in your class but you cannot see them why?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!