1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sashaice [31]
3 years ago
6

Two traveling sinusoidal waves are described by the wave functions y1 = 4.85 sin [(4.35x − 1270t)] y2 = 4.85 sin [(4.35x − 1270t

− 0.250)] where x, y1, and y2 are in meters and t is in seconds. (a) What is the amplitude of the resultant wave function y1 + y2?
Physics
1 answer:
Tamiku [17]3 years ago
8 0

Answer:

Approximately 9.62.

Explanation:

y_1 = 4.85\, \sin[(4.35\, x - 1270\, t) + 0].

y_2 = 4.85\, \sin[(4.35\, x - 1270\, t) + (-0.250)].

Notice that sine waves y_1 and y_2 share the same frequency and wavelength. The only distinction between these two waves is the (-0.250) in y_2\!.

Therefore, the sum (y_1 + y_2) would still be a sine wave. The amplitude of (y_1 + y_2)\! could be found without using calculus.

Consider the sum-of-angle identity for sine:

\sin(a + b) = \sin(a) \cdot \cos(b) + \cos(a) \cdot \sin(b).

Compare the expression \sin(a + b) to y_2. Let a = (4.35\, x - 1270) and b = (-0.250). Apply the sum-of-angle identity of sine to rewrite y_2\!.

\begin{aligned}y_2 &= 4.85\, \sin[(\underbrace{4.35\, x - 1270\, t}_{a}) + (\underbrace{-0.250}_{b})]\\ &= 4.85 \, [\sin(4.35\, x - 1270\, t)\cdot \cos(-0.250) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}.

Therefore, the sum (y_1 + y_2) would become:

\begin{aligned}& y_1 + y_2\\[0.5em] &= 4.85\, [\sin(4.35\, x - 1270\, t) \\ &\quad \quad \quad\;+\sin(4.35\, x - 1270\, t)\cdot \cos(-0.250) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \\[0.5em] &= 4.85\, [\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}.

Consider: would it be possible to find m and c that satisfy the following hypothetical equation?

\begin{aligned}& (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c)\\&= 4.85\, [\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}.

Simplify this hypothetical equation:

\begin{aligned}& m\cdot \sin((4.35\, x - 1270\, t) + c)\\&=\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)\end{aligned}.

Apply the sum-of-angle identity of sine to rewrite the left-hand side:

\begin{aligned}& m\cdot \sin((4.35\, x - 1270\, t) + c)\\[0.5em]&=m\, \sin(4.35\, x - 1270\, t)\cdot \cos(c) \\ &\quad\quad + m\, \cos(4.35\, x - 1270\, t)\cdot \sin(c) \\[0.5em] &=\sin(4.35\, x - 1270\, t)\cdot (m\, \cos(c)) \\ &\quad\quad + \cos(4.35\, x - 1270\, t)\cdot (m\, \sin(c)) \end{aligned}.

Compare this expression with the right-hand side. For this hypothetical equation to hold for all real x and t, the following should be satisfied:

\displaystyle 1 + \cos(-0.250) = m\, \cos(c), and

\displaystyle \sin(-0.250) = m\, \sin(c).

Consider the Pythagorean identity. For any real number a:

{\left(\sin(a)\right)}^{2} + {\left(\cos(a)\right)}^{2} = 1^2.

Make use of the Pythagorean identity to solve this system of equations for m. Square both sides of both equations:

\displaystyle 1 + 2\, \cos(-0.250) +  {\left(\cos(-0.250)\right)}^2= m^2\, {\left(\cos(c)\right)}^2.

\displaystyle {\left(\sin(-0.250)\right)}^{2} = m^2\, {\left(\sin(c)\right)}^2.

Take the sum of these two equations.

Left-hand side:

\begin{aligned}& 1 + 2\, \cos(-0.250) + \underbrace{{\left(\cos(-0.250)\right)}^2 + {\left(\sin(-0.250)\right)}^2}_{1}\\ &= 1 + 2\, \cos(-0.250) + 1 \\ &= 2 + 2\, \cos(-0.250) \end{aligned}.

Right-hand side:

\begin{aligned} &m^2\, {\left(\cos(c)\right)}^2 + m^2\, {\left(\sin(c)\right)}^2 \\ &= m^2\, \left( {\left(\sin(c)\right)}^2 +  {\left(\cos(c)\right)}^2\right)\\ &= m^2\end{aligned}.

Therefore:

m^2 = 2 + 2\, \cos(-0.250).

m = \sqrt{2 + 2\, \cos(-0.250)} \approx 1.98.

Substitute m = \sqrt{2 + 2\, \cos(-0.250)} back to the system to find c. However, notice that the exact value of c\! isn't required for finding the amplitude of (y_1 + y_2) = (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c).

(Side note: one possible value of c is \displaystyle \arccos\left(\frac{1 + \cos(0.250)}{\sqrt{2 \times (1 + \cos(0.250))}}\right) \approx 0.125 radians.)

As long as \! c is a real number, the amplitude of (y_1 + y_2) = (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c) would be equal to the absolute value of (4.85\, m).

Therefore, the amplitude of (y_1 + y_2) would be:

\begin{aligned}|4.85\, m| &= 4.85 \times \sqrt{2 + 2\, \cos(-0.250)} \\&\approx 9.62 \end{aligned}.

You might be interested in
a family backpacking at Yosemite national park took 5 hours to climb a mountain trail 7.5 km long. what was the family's average
nirvana33 [79]

Answer:

The average speed will be 1.5km/hr .

Explanation:

Distance need to be traveled = 7.5Km

Time taken = 5 hours

Average speed refers to total distance traveled with respect to total time taken .

It can be calculated as given below :

Average speed =total distance /total time taken

Substituting the values we get ,as shown below

Average speed =7.5/5=75/50

Average speed = 1.5 Km/hr

5 0
2 years ago
With what force will a car hit a tree if the car has a mass of 3,000 kg and it is accelerating at a rate of 2m/s2
Arisa [49]
<span>F=ma = 3000x2m/sec^2 =6000 newtons. </span>
6 0
3 years ago
What radiation do remote controls use?
dalvyx [7]

Answer:

infra red radiation is used

3 0
3 years ago
Explain why a Chef in a very busy restaurant would prefer a copper pot over an aluminum pot. A) The copper pot would heat faster
stellarik [79]
A would be the answer 
5 0
2 years ago
Read 2 more answers
Which of the following usually occurs with a short circuit? a. All parts of the circuit will begin to carry higher amounts of cu
fgiga [73]

Answer:

Hi,

The correct answer option is; D. Most of the current will flow through one part of the circuit.

Explanation:

A short circuit is a low resistance path in an electric connection between two conductors supplying current in a circuit.

It happens when excess amounts of current flow in the power source through a 'short path'.

Short circuits occur at very high temperatures which is of course caused by the heat produced during dissipation.

An example of application of short circuit is arc welding, where heating is achieved through short circuit.

6 0
3 years ago
Other questions:
  • If two stars differ by 9.6 magnitudes what is their flux ratio?
    12·1 answer
  • 10 m/s2 to km/h2 help<br>​
    12·2 answers
  • HURRY!
    5·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
    14·1 answer
  • Compasses line up with magnetic fields. A compass will line upA. Parallel to magnetic field lines, with the south pole pointing
    13·2 answers
  • 7. A box is being pushed from the left at 15N and pushed from the right at 10N,
    11·1 answer
  • a body of mass 3kg is dropped from a height 15m.what would be the velocity of the body at 10m of height? take g=10m/s​
    12·1 answer
  • I will award brainliest...Please what is the work done by a man who is pulling a box of 45kg of mass by means of rope which make
    7·1 answer
  • Please help me<br> asdfghjklqwertyuioikjhgfrfghjuhygfdfghjmhgtfhjk
    10·1 answer
  • If you increase your speed from 10 mph to 30 mph, how much will your stopping distance increase?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!