<span>A. Chemical energy to chemical energy</span>
The answer to the question is b because acid is a substance that tastes sour, reacts with metal and turns litmus paper blue
Answer:
C = 4,174 10³ V / m^{3/4}
, E = 7.19 10² / ∛x, E = 1.5 10³ N/C
Explanation:
For this exercise we can calculate the value of the constant and the electric field produced,
Let's start by calculating the value of the constant C
V = C
C = V / x^{4/3}
C = 220 / (11 10⁻²)^{4/3}
C = 4,174 10³ V / m^{3/4}
To calculate the electric field we use the expression
V = E dx
E = dx / V
E = ∫ dx / C x^{4/3}
E = 1 / C x^{-1/3} / (- 1/3)
E = 1 / C (-3 / x^{1/3})
We evaluate from the lower limit x = 0 E = E₀ = 0 to the upper limit x = x, E = E
E = 3 / C (0- (-1 / x^{1/3}))
E = 3 / 4,174 10³ (1 / x^{1/3})
E = 7.19 10² / ∛x
for x = 0.110 cm
E = 7.19 10² /∛0.11
E = 1.5 10³ N/C
It would be Joules.
Workdone is measured in Joules.
Workdone = Force * distance
Force = mass * acceleration
= kg * ms⁻²
= kgms⁻²
Distance = m
So, Force * distance
kgms⁻² * m
Apply laws of indices that says
x² * x³ = x²⁺³ = x⁵
Therefore, It would be kgm²s⁻²
m¹ * m¹ = m¹⁺¹ = m²
s⁻² is also = s / 2
In order to give a spaceship at rest in a specific reference frame s a speed increment of 0.500c, seven increments are required. Then, in this new frame, it receives an additional 0.500c increment.
The speed of an object, also known as v in kinematics, is a scalar quantity that refers to the size of the change in that object's position over time or the size of the change in that object's position per unit of time. The distance travelled by an object in a certain period of time divided by the length of the period gives the object's average speed in that period.
The spacecraft moves at v1 = 0.5c after the initial increment.The equation becomes V2 = V+V1/1+V*V1/c after the second one. 2 V2 = 0.5c+0.50c/1+(0.50c)^2/c^ 2 = 0.80c
Likewise, V3 = 0.929c
V4 = 0.976c
V5 = 0.992c
V6 = 0.99c
V7 = 0.999c
Learn more about speed here
brainly.com/question/28224010
#SPJ4