Answer:![F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]](https://tex.z-dn.net/?f=F_%7Bnet%7D%3D%5Cfrac%7Bkq%5E2%7D%7B%28L%29%5E2%7D%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B2%7D%2B%5Csqrt%7B2%7D%5Cright%20%5D)
Explanation:
Given
Three charges of magnitude q is placed at three corners and fourth charge is placed at last corner with -q charge
Force due to the charge placed at diagonally opposite end on -q charge

where
Distance between the two charges

negative sign indicates that it is an attraction force
Now remaining two charges will apply the same amount of force as they are equally spaced from -q charge

The magnitude of force by both the charge is same but at an angle of 
thus combination of two forces at 2 and 3 will be

Now it will add with force due to 1 charge
Thus net force will be
![F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]](https://tex.z-dn.net/?f=F_%7Bnet%7D%3D%5Cfrac%7Bkq%5E2%7D%7B%28L%29%5E2%7D%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B2%7D%2B%5Csqrt%7B2%7D%5Cright%20%5D)
When red light illuminates a grating with 7000 lines per centimeter, its second maximum is at 62.4°. What is the wavelength of this light?
ans: 633nm
I’m pretty sure the answer is c and d hope this helps and good luck
Answer:
The Michelson-Morley was designed to detect the motion of the earth through the ether.
No such relation was found and the speed of light is assumed to be the same in all reference frames.
Answer:
a)
b)
c)
d)
m
e)λ=∞
Explanation:
De Broglie discovered that an electron or other mass particles can have a wavelength associated, and that wavelength (λ) is:

with h the Plank's constant (
) and P the momentum of the object that is mass (m) times velocity (v).
a)

b)

c)

d)
m
e) 
λ=∞