Answer:
800 N
Explanation:
By Newton's third law which states that for every action, there is an equal and opposite reaction.
So, as the earth attracts the person towards its center, the person attracts the earth towards itself with the same magnitude of force but in the opposite direction.
Since the person is attracted towards the center of the earth by an 800 N gravitational force, the the earth is attracted toward the person with an 800 N reaction force.
You have to figure it out
Answer:
26.9 Pa
Explanation:
We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:
(1)
where
is the cross-sectional area of the 1st section of the pipe
is the cross-sectional area of the 2nd section of the pipe
is the velocity of the 1st section of the pipe
is the velocity of the 2nd section of the pipe
In this problem we have:
is the velocity of blood in the 1st section
The diameter of the 2nd section is 74% of that of the 1st section, so

The cross-sectional area is proportional to the square of the diameter, so:

And solving eq.(1) for v2, we find the final velocity:

Now we can use Bernoulli's equation to find the pressure drop:

where
is the blood density
are the initial and final pressure
So the pressure drop is:

Answer:
a) Em₀ = 42.96 104 J
, b)
= -2.49 105 J
, c) vf = 3.75 m / s
Explanation:
The mechanical energy of a body is the sum of its kinetic energy plus the potential energies it has
Em = K + U
a) Let's look for the initial mechanical energy
Em₀ = K + U
Em₀ = ½ m v2 + mg and
Em₀ = ½ 50.0 (1.20 102) 2 + 50 9.8 142
Em₀ = 36 104 + 6.96 104
Em₀ = 42.96 104 J
b) The work of the friction force is equal to the change in the mechanical energy of the body
= Em₂ -Em₀
Em₂ = K + U
Em₂ = ½ m v₂² + m g y₂
Em₂ = ½ 50 85 2 + 50 9.8 427
Em₂ = 180.625 + 2.09 105
Em₂ = 1,806 105 J
= Em₂ -Em₀
= 1,806 105 - 4,296 105
= -2.49 105 J
The negative sign indicates that the work that force and displacement have opposite directions
c) In this case the work of the friction going up is already calculated in part b and the work of the friction going down would be 1.5 that job
We have that the work of friction is equal to the change of mechanical energy
= ΔEm
= Emf - Emo
-1.5 2.49 10⁵ = ½ m vf² - 42.96 10⁴
½ m vf² = -1.5 2.49 10⁵ + 4.296 10⁵
½ 50.0 vf² = 0.561
vf = √ 0.561 25
vf = 3.75 m / s