The centripetal acceleration is given by

where v is the tangential speed and r the radius of the circular orbit.
For the car in this problem,

and r=40 m, so we can re-arrange the previous equation to find the velocity of the car:
Power is the rate of energy. Mathematically, it is
Power (p) = Energy(E) / Time(t)
Hope this helps!
Answer:
a) t = 1.6 s
b) d = 4.9 m
c) v = 16 m/s
d) θ = 79°
Explanation:
time of fall
t = √(2h/g) = √(2(12)/9.8) = 1.5649... s
d = vt = 3.1(1.56) = 4.8512...
vertical velocity vy = at = 9.8(1.56) = 15.336... m/s
v = √(15.336² + 3.1²) = 15.6464... m/s
θ = arctan(15.336/3.1) = 78.5724...°
B.The water molecules in the black can had the largest increase in average kinetic energy.
<u>Explanation:</u>
Here, black painted can absorbs more heat than the other color painted cans.
Black color absorbs all the heat and didn't reflect anything back, so it absorbs the most heat.
White color reflects all the heat, so heat absorbed by the white can is least.
When the black can absorbs heat then the water molecules in the can gets its maximum amount of kinetic energy so that the water molecules in the can collide with each other and also along with the walls of the can here, and so the average kinetic energy increases.
I believe the answer would be Light rays are reflected by mirrors