1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Daniel [21]
3 years ago
6

A baseball is dropped off the side of a cliff. It free-falls to the ground in 8 seconds. During the third second, the ball is tr

aveling about ___ m/s.
Physics
2 answers:
Anna [14]3 years ago
6 0

when an object drops it accelerates at 9.8 mps so at 3 seconds the equation would be 9.8x3 which equals 29.4

kozerog [31]3 years ago
3 0
The acceleration of gravity is 9.8 m/s² .  That means that a falling object
is always falling 9.8 m/s faster than it was falling 1 second earlier.

If an object is not slowed by air resistance, and has far enough to go
so that it's still falling after three whole seconds, then at the end of
three seconds it's falling at

           (9.8 m/s²) x (3 sec)  =  29.4 m/s
You might be interested in
a toy airplane is flying at a speed of 8 m/s with an acceleration of 0.9 m/s^2. How fast is it flying after 2 seconds?
Marat540 [252]

Answer:

it  will be flying 1.8 m/s

Explanation:

4 0
3 years ago
The velocity of a car is 65 m/s and it’s mass is 2515 kg. What is it’s KE?
Aloiza [94]
<span>Example Problems. Kinetic Energy (KE = ½ m v2). 1) The velocity of a car is 65 m/s and its mass is 2515 kg. What is its KE? 2) If a 30 kg child were running at a rate of 9.9 m/s, what is his KE? Practice Problems. IN THIS ORDER…. Page 2: #s 6, 7, 8, 5. Potential Energy. An object can store energy as the result of its position.</span><span>
</span>
4 0
3 years ago
Read 2 more answers
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
3 years ago
Read 2 more answers
A ball is thrown straight up in the air and just before it lands it is travelling -47.5 m/s. How long was the ball in the air?
Setler [38]
Use v = u + at
Message me if you need more help
6 0
3 years ago
Shelly rolls ball A in the positive x direction with a velocity of 7.5 meters/second. It hits stationary ball B and they undergo
blagie [28]
<span>If Shelly rolls ball A in the positive x direction with a velocity of 7.5 meters/second, and It hits stationary ball B and they undergo elastic collision, thus the two balls have different masses, then the following statement which is true is the statement that stated that there was no y-momentum initially.</span>
7 0
3 years ago
Other questions:
  • Give two examples of energy being transformed from one type to another
    7·1 answer
  • When a basketball player dribbles a ball, it falls to the floor and bounces up. Is a force required to make it bounce? Why? If a
    9·1 answer
  • TEST HELP PLEASE!! WILL GIVE MEDAL TO BEST ANSWER!!
    9·2 answers
  • PLZ HELP!
    6·2 answers
  • The diagram represents water waves travelling from deep water into an area of much shallower water.
    11·1 answer
  • Galaxies are classified based on their<br> a. shape.<br> c. stars.<br> b. color.<br> d. age.
    12·2 answers
  • Please help me with physics ks3!! Sound waves and hearding (pic incl)
    13·2 answers
  • You are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a n
    12·1 answer
  • How does the amount of energy in light change as the wavelength increases
    11·1 answer
  • What is the mass of an object if it took 270 Joules of work to move it 15 meters?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!