The summit of Mount Everest has an average pressure around 30 kPa. ... A barometer also measures variations in atmospheric pressure. As altitude increases, the air becomes thinner, the density of air decreases, and the pressure of the air decreases as well.
Answer: The acceleration of the object is 0.67m/s^2 west.
Explanation: Here we are given the initial velocity and final velocity as well as the time taken. Acceleration is the change in velocity per unit time, thus the equation becomes.
a=dv/t
a=vf-vi/t
a=-2.1-4.7/3.9
a= 0.66m/s^2 west
Rearranging formulas is all about simple algebra rules. Just like when solving for x in an equation, you're just isolating whichever variable you want. I'll work this one out for you and hopefully it'll help, but if you need more explanation, then feel free to comment!
D = ViT + 0.5at² Subtract ViT from both sides
D - ViT = 0.5at² Divide both sides by 0.5t²
I wrote this step out a little more to show how your fraction will cancel
= a I like to flip these around so the single variable is on the right
a = 
Answer:
32.46m/s
Explanation:
Hello,
To solve this exercise we must be clear that the ball moves with constant acceleration with the value of gravity = 9.81m / S ^ 2
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are the follow

Where
Vf = final speed
Vo = Initial speed
=7.3m/S
A = g=acceleration
=9.81m/s^2
X = displacement
=51m}
solving for Vf

the speed with the ball hits the ground is 32.46m/s
Answer:
It is neither false nor true. When they collide some of one of the objects goes to the other object.
Explanation: