Ek = 1/2 mv^2
If they are travelling at the same speed the one with the larger mass will have more kinetic energy as kinetic energy and mass are proportional.
Answer:
position 9.58 m
Explanation:
In impulse exercises and amount of movement, we always assume that the contact time is small,
I = Δp
With this expression we can calculate the final speed
I = m Vf - m Vo
Vf = (I + mVo) / m
Vf = (1.8 + 0.35 1.8) /0.35
Vf = 6.94 m / s
To calculate the acceleration of the ball we use Newton's second law, after finishing the impulse
∑ F = m a
fr = m a
a = fr / m
a = -0.26 / 0.35
a = -0.74 m/s²
A negative sign indicates that this acceleration is slowing the ball
Now we have speed and time acceleration, so we can use the kinematic equations to find the position at 1.5 s
X = Vo t + ½ to t²
In this case Vo is the speed with which the ball comes out after the impulse 6.94
X = 6.94 1.5 + ½ (-0.74) 1.522
X = 9.58 m
Given:
Focal length: 5.0 cm
image produced: -10.0 cm
mirror equation: 1/di + 1/do = 1/f
Look for the actual distance of the object from the mirror. Solve for do.
1/do + 1/(-10) = 1/5
1/do = 1/5 + 1/10
1/do = (1/5 * 2/2) + (1/10 * 1/1)
1/do = 2/10 + 1/10
1/do = 3/10
10 = 3do
10/3 = do
3.33 = do
The distance of the object from the mirror, rounded to the nearest centimeter is 3 cm.
Answer:

Explanation:
0.2 rev/s = 0.2 rev/s * 2π rad/rev = 0.4π rad/s
Since the angular acceleration is assumed to be constant, and the wheel's angular speed is increasing from rest (0 rad/s) to 0.4π rad/s within 23.8s. Then the angular acceleration must be
Answer:
625 piece.
Explanation:
Let n be the required no of piece
200 litre = 200 x 10⁻³ m³ = 200 x 10⁻³ x 10³ kg = 200 Kg
mass of ice piece = n x 30 x /1000
Heat lost by ice pieces = (n x 30) / 1000 x ( 80 + 1 x 16⁰C)
Heat gained by water = 200 x 1 x 9⁰C
Heat lost = Heat gained
(n x 30) /1000 x ( 80 + 16 ) =200 x 9
2.88 n = 1800
n = 625