Answer:
For the most part, non-metals (excluding Nobel gases) are the most likely to form covalent bonds. Pure covalent bonds are formed between atoms with the same electronegativity, ie. they are trying to hold on to the electrons in the bond with the same strength.
Answer: 0.03798 kilograms
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:
1 mole of chlorine gas
weighs = 71 g
Thus 0.535 moles of chlorine gas
will weigh =
(1kg=1000g)
Thus there are 0.03798 kilograms in 12 L of chlorine gas.
I Cant Answer your question but maybe this will help
Volume Changes for Gases
Particles in a gas have more freedom of movement than they do in a liquid. According to the ideal gas law, the pressure (P) and volume (V) of a gas are mutually dependent on temperature (T) and the number of moles of gas present (n). The ideal gas equation is PV = nRT, where R is a constant known as the ideal gas constant. In SI (metric) units, the value of this constant is 8.314 joules ÷ mole - degree K.
Pressure is constant: Rearranging this equation to isolate volume, you get: V = nRT ÷ P, and if you keep the pressure and number of moles constant, you have a direct relationship between volume and temperature: ∆V = nR∆T ÷ P, where ∆V is change in volume and ∆T is change in temperature. If you start from an initial temperature T0 and pressure V0 and want to know the volume at a new temperature T1 the equation becomes:
V1 = [n • R • (T1 - T0) ÷ P] +V0
Temperature is constant: If you keep the temperature constant and allow pressure to change, this equation gives you a direct relationship between volume and pressure:
V1 = [n • R • T ÷ (P1 - P0)] + V0
Notice that the volume is larger if T1 is larger than T0 but smaller if P1 is larger than P0.
Pressure and temperature both vary: When both temperature and pressure vary, the the equation becomes:
V1 = n • R • (T1 - T0) ÷ (P1 - P0) + V0
Plug in the values for initial and final temperature and pressure and the value for initial volume to find the new volume.
Answer:
Explanation:
Using the ideal gas equation as follows:
PV = nRT
Where:
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
Based on the information provided in this question;
P = 1.6atm
n = 4.4 moles
R = 0.0821 L*atm/mol*K
T = 32.9°C = 32.9 + 273 = 305.9K
V = ?
A hydrocarbon with three or more consecutive (cumulative) double bonds is known as a cumulene. They are analogous to allenes, only exhibiting a more elongated chain. The basic molecule in this category is butatriene, which is also simply known as cumulene.
In the structure of a cumulene, there are 3 double bonds and 4 single bonds. The double bond comprises 1 sigma bond, and 1 pi bond and 4 hydrogen bond produces a sigma bond with carbon. Thus, the molecule of cumulene comprises 7 sigma bonds and 3 pi bonds.