Answer:
Make an observation.
Ask a question.
Form a hypothesis, or testable explanation.
Make a prediction based on the hypothesis.
Test the prediction.
Iterate: use the results to make new hypotheses or predictions.
Answer:
The salt that is produces is NaBr.
Explanation:
When an acid react with base it form the salt and water. The reaction is also called neutralization reaction because both neutralize each other.
In neutralization reaction equal amount of acid and base react to neutralize each other and equal amount of water and salt are formed. When pH does not reach to 7 its means there is less amount of one of reactant which is not fully neutralize.
Neutralization reactions are also used as first aid. For example when someone is dealing with HCl for cleaning purpose of toilet and get touched. It is advised to neutralize it with soap, milk or egg white.
Example:
Hydrobromic acid when react with the sodium hydroxide, a salt sodium bromide and water are formed.
Chemical equation:
HBr + NaOH → NaBr + H₂O
Properties of Sodium Bromide:
- It is present in the form of colorless crystals.
- It is also present in powder form.
- It is very toxic.
- It is soluble in water.
- It is bitter in taste and also odorless.
Answer:
t = 5.7634 s
Explanation:
- A → Pdts
- - rA = K (CA)∧α = - δCA/δt
∴ T = 400°C
∴ α = 1 ....first-order
∴ CAo = 0.950 M
∴ CA = 0.300 M
⇒ t = ?
⇒ - δCA/δt = K*CA
⇒ - ∫δCA/CA = K*∫δt
⇒ Ln (CAo/CA) = K*t
⇒ t = Ln(CAo/CA) / K
⇒ t = (Ln(0.950/0.300)) / (0.200 s-1)
⇒ t = 1.1527 / 0.200 s-1
⇒ t = 5.7634 s
Answer:
1. 0.0637 moles of nitrogen.
2. The partial pressure of oxygen is 0.21 atm.
Explanation:
1. If we assume ideal behaviour, we can use the Law of ideal gases to find the moles of nitrogen, considering that air composition is mainly nitrogen (78%), oxygen (21%) and argon (1%):
2. Now, in order to find he partial pressure of oxygen we need to find the total moles of air, and then the moles of oxygen. Then, we use these results to determine the molar fraction of oxygen, to multiply it with total pressure and get the partial pressure of oxygen as follows:
As you see, the molar fraction and volume fraction are the same because of the assumption of ideal behaviour.