Answer:
109.7178g of H2O
Explanation:
First let us generate a balanced equation for the reaction. This is illustrated below:
2C3H8O + 9O2 —> 6CO2 + 8H2O
Next we will calculate the molar mass and masses of C3H8O and H20. This is illustrated below:
Molar Mass of C3H8O = (3x12.011) + (8x1.00794) + 15.9994 = 36.033 + 8.06352 + 15.9994 = 60.09592g/mol.
Mass of C3H8O from the balanced equation = 2 x 60.09592 = 120.19184g
Molar Mass of H2O = (2x1.00794) + 15.9994 = 2.01588 + 15.9994 = 18.01528g/mol
Mass of H2O from the balanced equation = 8 x 18.01528 = 144.12224g
From the equation,
120.19184g of C3H8O produced 144.12224g of H20.
Therefore, 91.5g of C3H8O will produce = (91.5 x 144.12224) /120.19184 = 109.7178g of H2O
The reaction between 1 mole of NaOH and 1 mole of HCl creates 1 mole of NaCl and 1 mole of water. Meaning that the moles of HCl needs to equal that of NaOH for the solution to be considered equalized. That being said, you first need to find the numbers miles of HCl by multiplying the volume by the molarity to get 0.01 moles HCl. (1Mx0.01L=0.01). That means that you need 0.01 moles of NaOH. I hope that helps. Let me know if anything is unclear.
The element "X" is "O" (oxygen).
<h3>Calculation:</h3>
Given,
Chemical formula = Na₂CX₃
Formula mass = 106 amu
Molar mass of Na = 23 amu
Molar mass of C = 12 amu
To find,
Element X =?
We will equate the equation as follows,
2(23) + 12 + 3(y) = 106
46 + 12 + 3y =106
58 + 3y = 106
3y = 106 - 58
3y = 48
y = 48/3
y = 16
We know that Oxygen has molecular mass of 16. Therefore the element "X" is "O".
Learn more about molar mass here:
brainly.com/question/22997914
#SPJ4
Mitochondria are rod-shaped organelles are basically considered the power producers of the cell, it converts oxygen and nutrients into adenosine triphosphate or ATP, which is the chemical energy,also known as "currency" of the cell which powers the metabolic actions of the cell. This process is called aerobic respiration and it is the reason animals breathe oxygen. Cellular repiration happens in the mitochodrion. The 3 phases of cellular respiration are Krebs Cycle, Electron Transport and Glycolysis (Fermentation). Glycolysis takes place in the cytoplasm while the Krebs cycle and electron transport take place in the mitochondria.