Answer:
I think the answer is Toledo
Hbr is the answer when I work it out that’s what I got.
Oxygen has a strong double bond which has more stability than the single co-ordinate bond in ozone, therefore more energy is required to break the O2 bonding than ozone, so the ozone molecule is more reactive than oxygen gas. ... The oxygen free radical contains two unpaired electrons in its valence shell.
Answer:
The formula of the original halide is SrCl₂.
Explanation:
- The balanced equation of this reaction is:
SrX₂ + H₂SO₄ → SrSO₄ + 2 HX, where X is the halide.
- From the equation stichiometry, 1.0 mole of strontium halide will result in 1.0 mole of SrSO₄.
- The number of moles of SrSO₄ <em>(n = mass/molar mass) </em>= (0.755 g) / (183.68 g/mole) = 4.11 x 10⁻³ mole.
- The number of moles of SrX are 4.11 x 10⁻³ moles from the stichiometry of the balanced equation.
- n = mass / molar mass, n = 4.11 x 10⁻³ moles and mass = 0.652 g.
- The molar mass of SrX₂ = mass / n = (0.652) / (4.11 x 10⁻³ moles) = 158.62 g/mole.
- The molar mass of SrX₂ (158.62 g/mole) = Atomic mass of Sr (87.62 g/mole) + (2 x Atomic mass of halide X).
- The atomic mass of halide X = (158.62 g/mole) - (87.62 g/mole) / 2 = 71 / 2 g/mole = 35.5 g/mole.
- This is the atomic mass of Cl.
- <em>So, the formula of the original halide is SrCl₂</em>.
Answer:
Only one—(i), or (ii), or (iii)—increases the reaction rate.
Explanation:
<em>Which of the following changes always leads to an increase in the rate constant for a reaction?</em>
- <em>Decreasing the temperature. </em>NO. A lower temperature leads to a slower reaction because the molecules have less energy to react.
- <em>Decreasing the activation energy</em>. YES. According to the Arrhenius equation, the lower the activation energy, the higher the rate constant.
- <em>Making the value of ΔE more negative</em>. NO. A more negative ΔE means a reaction is more spontaneous but not faster.