Atomic mass? I'm not shre
Other commonly used units include g/L (grams of solute per liter of solution) and m/L (moles of solute per liter of solution). Solubility units always express the maximum amount of solute that will dissolve in either a given amount of solvent, or a given amount of solution, at a specific temperature.
The question is basically asking what is happening to the energy (that is in the form of heat) when it is being absorbed by an object. The energy being absorbed from the heat source is being turned into kinetic energy. This can be explained by temperature change. As you add more heat to an object, the temperature rises. Since temperature is the average kinetic energy of all of the molecules in an object, we can say that as temperature rises so does the kinetic energy of the molecules in the object. Due to the fact that heat is causing the temperature to increase, we can say that the energy from the heat is being turned into kinetic energy.
I hope this helps. Let me know in the comments if anything is unclear.
Answer:
Sugar is a polar compound , in the solid state of it Hydrogen bond strongly binds the molicules of sugar together. Being a non polar solvent and low polarity difference between Cl and C atom C—Cl bond in CCl4 is unable to form hydrogen bond. That's why sugar can't be soluble in CCl4.
Explanation:
Answer:
Mass = 0.697 g
Explanation:
Given data:
Volume of hydrogen = 1.36 L
Mass of ammonia produced = ?
Temperature = standard = 273.15 K
Pressure = standard = 1 atm
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
First of all we will calculate the number of moles of hydrogen:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
1atm ×1.36 L = n × 0.0821 atm.L/mol.K × 273.15 K
1.36 atm.L = n × 22.43 atm.L/mol
n = 1.36 atm.L / 22.43 atm.L/mol
n = 0.061 mol
Now we will compare the moles of hydrogen and ammonia:
H₂ : NH₃
3 : 2
0.061 : 2/3×0.061 = 0.041
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 0.041 mol × 17 g/mol
Mass = 0.697 g