B. Water Temperature {A PE X}
Explanation:
Answer:
Explanation:
Given parameters;
pH = 8.74
pH = 11.38
pH = 2.81
Unknown:
concentration of hydrogen ion and hydroxyl ion for each solution = ?
Solution
The pH of any solution is a convenient scale for measuring the hydrogen ion concentration of any solution.
It is graduated from 1 to 14
pH = -log[H₃O⁺]
pOH = -log[OH⁻]
pH + pOH = 14
Now let us solve;
pH = 8.74
since pH = -log[H₃O⁺]
8.74 = -log[H₃O⁺]
[H₃O⁺] = 10⁻
[H₃O⁺] = 1.82 x 10⁻⁹mol dm³
pH + pOH = 14
pOH = 14 - 8.74
pOH = 5.26
pOH = -log[OH⁻]
5.26 = -log[OH⁻]
[OH⁻] = 10
[OH⁻] = 5.5 x 10⁻⁶mol dm³
2. pH = 11.38
since pH = -log[H₃O⁺]
11.38 = -log[H₃O⁺]
[H₃O⁺] = 10⁻
[H₃O⁺] = 4.17 x 10⁻¹² mol dm³
pH + pOH = 14
pOH = 14 - 11.38
pOH = 2.62
pOH = -log[OH⁻]
2.62 = -log[OH⁻]
[OH⁻] = 10
[OH⁻] =2.4 x 10⁻³mol dm³
3. pH = 2.81
since pH = -log[H₃O⁺]
2.81 = -log[H₃O⁺]
[H₃O⁺] = 10⁻
[H₃O⁺] = 1.55 x 10⁻³ mol dm³
pH + pOH = 14
pOH = 14 - 2.81
pOH = 11.19
pOH = -log[OH⁻]
11.19 = -log[OH⁻]
[OH⁻] = 10
[OH⁻] =6.46 x 10⁻¹²mol dm³
Answer:
3.82 x 10²¹ molecules As₂O₃
Explanation:
To find the amount of molecules arsenic (III) oxide (As₂O₃), you need to (1) convert kg to lbs, then (2) convert g As₂O₃ to moles As₂O₃ (via molar mass), and then (3) convert moles to molecules (via Avogadro's number).
1 kilogram = 2.2 lb
Molar Mass (As₂O₃): 2(74.992 g/mol) + 3(15.998 g/mol)
Molar Mass (As₂O₃): 197.978 g/mol
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
0.0146 g As₂O₃ 1 kg 189 lb
------------------------ x --------------- x ------------------ x ................
1 kg 2.2 lb
1 mole 6.022 x 10²³ molecules
x ------------------ x --------------------------------------- = 3.82 x 10²¹ molecules As₂O₃
197.978 g 1 mole
Tell the teacher, do NOT clean it up yourself.