I would say copper, silver, and tin, since an alloy is a mixture of metals and metalloids.
Answer:
0.387 g
Explanation:
pH of the buffer = 1
V = Volume of solution = 100 mL
[HA] = Molarity of HA = 0.1 M
= Acid dissociation constant =
(assuming base as
)
Molar mass of base = 322.2 g/mol
pKa is given by

From the Henderson-Hasselbalch equation we get
![pH=pK_a+\log\dfrac{[A^-]}{[HA]}\\\Rightarrow pH-pK_a=\log\dfrac{[A^-]}{[HA]}\\\Rightarrow 10^{pH-pK_a}=\dfrac{[A^-]}{[HA]}\\\Rightarrow [A^-]=10^{pH-pK_a}[HA]\\\Rightarrow [A^-]=10^{1-1.92}\times0.1\\\Rightarrow [A^-]=0.01202\ \text{M}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%5Cdfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D%5C%5C%5CRightarrow%20pH-pK_a%3D%5Clog%5Cdfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D%5C%5C%5CRightarrow%2010%5E%7BpH-pK_a%7D%3D%5Cdfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D%5C%5C%5CRightarrow%20%5BA%5E-%5D%3D10%5E%7BpH-pK_a%7D%5BHA%5D%5C%5C%5CRightarrow%20%5BA%5E-%5D%3D10%5E%7B1-1.92%7D%5Ctimes0.1%5C%5C%5CRightarrow%20%5BA%5E-%5D%3D0.01202%5C%20%5Ctext%7BM%7D)
Moles of base

Mass of base is given by

The required mass of the base is 0.387 g.
Maybe like a diamond or something
The answer is D. To put it simply, all atom wished to become stable. The only way for that is to obtain an octet structure where the outermost shell would have 8 electrons, thus being full.
Hey there! The answer to your first question is SILICON, Nickle has 28 protons, silicon has 14, 14+14=28. Its the only element thats adds up. I dont know about the 2nd one myself.