Answer:
Fe(CN)₂, FeCO₃, Pb(CN)₄, Pb(CO₃)₂
Explanation:
Cations (positively charged ions) can only form ionic bonds with anions (negatively charged ions). However, you can't just simply put one cation and one anion together to form a compound. Each compound needs to been neutral, or have an overall charge of 0. When cations and anions do not have charges that perfectly cancel, you need to modify the amount of each ion in the compound.
1.) Fe(CN)₂
-----> Fe²⁺ and CN⁻
-----> +2 + (-1) + (-1) = 0
2.) FeCO₃
-----> Fe²⁺ and CO₃²⁻
-----> +2 + (-2) = 0
3.) Pb(CN)₄
-----> Pb⁴⁺ and CN⁻
-----> +4 + (-1) + (-1) + (-1) + (-1) = 0
4.) Pb(CO₃)₂
-----> Pb⁴⁺ and CO₃²⁻
-----> +4 +(-2) + (-2) = 0
Answer:
The Art of Protein Synthesis
In eukaryotic cells, transcription takes place in the nucleus. During transcription, DNA is used as a template to make a molecule of messenger RNA (mRNA). The molecule of mRNA then leaves the nucleus and goes to a ribosome in the cytoplasm, where translation occurs.
Explanation:
Plz mark brainliest thanks
The variable that stays the same in an experiment is called the controlled variable
Hope this helps
Answer:
CO₃²⁻(aq) + 2H⁺(aq) → CO₂ (g) + H₂O (l)
Explanation:
The balanced reaction between Na2CO3 and HCl is given as;
Na₂CO₃ (aq) + 2 HCl (aq) → 2 NaCl (aq) + CO₂ (g) + H₂O (l)
The next step is o express the species as ions.
The complete ionic equation for the above reaction would be;
2Na⁺(aq) + CO₃²⁻(aq) + 2H⁺(aq) + 2Cl⁻(aq) → Na⁺(aq) + Cl⁻(aq) + CO₂ (g) + H₂O (l)
The next step is to cancel out the spectator ion ions; that is the ions that appear in both the reactant and product side unchanged.
The spectator ions are; Na⁺ and Cl⁻
The net ionic equation is given as;
CO₃²⁻(aq) + 2H⁺(aq) → CO₂ (g) + H₂O (l)
ΔΗ= -115.6 kJ/mol
H2 has a Mr of 2, so as mol=mass/mr we can work out that there are 4 moles of H reacting
Therefore we multiply -115.6 by 4 = -462.4