Answer:
Isopropylbenzene
Explanation:
If you draw the structure, you can see that there are two methyl groups and in between there.
Adjacent to CH3, there are four neighbouring hydrogens, therefore, n=4+1 = 5. The same is for methyl on other side. For carbon present in benzene ring, there is 2, since there is one hydrogen on benzene per carbon.
Zero (0) molecules of glucose are produced.
Answer:
140 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 3 atm
- Initial temperature of the gas (T₁): 280 K
- Final pressure of the gas (P₂): 1.5 atm
- Final temperature of the gas (T₂): ?
Step 2: Calculate the final temperature of the gas
We have a gas whose pressure is reduced. If we assume an ideal behavior, we can calculate the final temperature of the gas using Gay-Lussac's law.
T₁/P₁ = T₂/P₂
T₂ = T₁ × P₂/P₁
T₂ = 280 K × 1.5 atm/3 atm = 140 K
Esters and Formation of esters. Esters and water are formed when alcohols react with carboxylic acids. This reaction is called esterification, which is a reversible reaction. ... Since esterification is a reversible reaction, esters can undergo hydrolysis to form corresponding alcohol and organic acid.