1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lina2011 [118]
3 years ago
7

* If you found a fossil like the one pictured above in an open grassy field, what could you infer about this particular part of

Earth
during much earlier times?
Earth's earlier environment in this particular area was covered with water.
Earth's earlier environment in this particular area was most likely a deep
canyon
Earth's earlier environment in this particular area was frozen like the
ground coverings of a tundra.
Earth's earlier environment in this particular area was also similar to the
open, grassy field you see today.
Chemistry
2 answers:
Sergio039 [100]3 years ago
7 0

Answer:Do you have a photo available of the fossil? It’s fine if not!

Explanation:

Anastaziya [24]3 years ago
6 0

Answer:

A

it on the explanation for ms yoder

You might be interested in
Write the possible sets of quantum numbers of l=3
kykrilka [37]

Answer:

Explanation:

There are four quantum numbers:

Principal quantum number (n)

Azimuthal quantum number (l)

Magnetic quantum number (ml)

Spin quantum number (ms)

All these four quantum numbers gives complete information about an electron like its spin, shells, subshells and orbitals.

For example:

If l=3 than possible sets of quantum numbers are:

Azimuthal quantum number (l)

The azimuthal quantum number describe the shape of orbitals. Its value for s, p, d, f... are 0, 1, 2, 3. For l=3

(n-1)

4-1 = 3

it means principle quantum is 4 and electron is present in f subshell.

Magnetic quantum number (ml)

It describe the orientation of orbitals. Its values are -l to +l. For l=3  the ml will be -3 -2 -1 0 +1 +2 +3.

Spin quantum number (ms)

The spin quantum  number tells the spin of electron either its clock wise (+1/2) or anti clock wise (-1/2).

If the electron is added in full empty orbital its spin will be +1/2 because it occupy full empty. If electron is already present and another electron is added then its spin will be -1/2.

4 0
3 years ago
6. A 25.0-mL sample of 0.125 M pyridine is titrated with 0.100 M HCI. Calculate the pH
Vadim26 [7]

Answer:

a) pH = 9.14

b) pH = 8.98

c) pH = 8.79

Explanation:

In this case we have an acid base titration. We have a weak base in this case the pyridine (C₅H₅N) and a strong acid which is the HCl.

Now, we want the know the pH of the resulting solution when we add the following volume of acid: 0, 10 and 20.

To know this, we first need to know the equivalence point of this titration. This can be known using the following expression:

M₁V₁ = M₂V₂  (1)

Using this expression, we can calculate the volume of acid required to reach the equivalence point. Doing that we have:

M₁V₁ = M₂V₂

V₁ = M₂V₂ / M₁

V₁ = 0.125 * 25 / 0.1 = 31.25 mL

This means that the acid and base will reach the equivalence point at 31.25 mL of acid added. So, the volume of added acid of before, are all below this mark, so we can expect that the pH of this solution will be higher than 7, in other words, still basic.

To know the value of pH, we need to apply the following expression:

pH = 14 - pOH  (2)

the pOH can be calculated using this expression:

pOH = -log[OH⁻]  (3)

The [OH⁻] is a value that can be calculated when the pyridine is dissociated into it's ion. However, as this is a weak acid, the pyridine will not dissociate completely in solution, instead, only a part of it will be dissociated. Now, to know this, we need the Kb value of the pyridine.

The reported Kb value of the pyridine is 1.5x10⁻⁹ so, with this value we will do an ICE chart for each case, and then, calculate the value of the pH.

<u>a) 0 mL of acid added.</u>

In this case, the titration has not begun, so the concentration of the base will not be altered. Now, with the Kb value, let's write an ICE chart to calculate the [OH⁻], the pOH and then the pH:

       C₅H₅N + H₂O <-------> C₅H₅NH⁺ + OH⁻     Kb = 1.5x10⁻⁹

i)       0.125                                0             0

e)        -x                                   +x           +x

c)      0.125-x                              x             x

Writting the Kb expression:

Kb = [C₅H₅NH⁺] [OH⁻] / [C₅H₅N]    replacing the values of the chart:

1.5x10⁻⁹ = x² / 0.125-x --> Kb is really small, so we can assume that x will be very small too, and 0.125-x can be neglected to only 0.125, and then:

1.5x10⁻⁹ = x² / 0.125

1.5x10⁻⁹ * 0.125 = x²

x = [OH⁻] = 1.37x10⁻⁵ M

Now, we can calculate the pOH:

pOH = -log(1.37x10⁻⁵) = 4.86

Finally the pH:

pH = 14 - 4.86

<h2>pH = 9.14</h2>

<u>b) 10 mL of acid added</u>

In this case the titration has begun so the acid starts to react with the base, so we need to know how many moles of the base remains after the volume of added acid:

moles acid = 0.1 * (0.010) = 1x10⁻³ moles

moles base = 0.125 * 0.025 = 3.125x10⁻³

This means that the base is still in higher quantities, and the acid is the limiting reactant here, so the remaining moles will be:

remaining moles of pyridine = 3.125x10⁻³ - 1x10⁻³ = 2.125x10⁻³ moles

The concentration of pyridine in solution:

[C₅H₅N] = 2.125x10⁻³ / (0.025 + 0.010) = 0.0607 M

Now with this concentration, we will do the same procedure of before, with the ICE chart, but replacing this new value of the base, to get the [OH⁻] and then the pH:

        C₅H₅N + H₂O <-------> C₅H₅NH⁺ + OH⁻     Kb = 1.5x10⁻⁹

i)       0.0607                             0             0

e)        -x                                   +x           +x

c)      0.0607-x                           x             x

Writting the Kb expression:

Kb = [C₅H₅NH⁺] [OH⁻] / [C₅H₅N]    replacing the values of the chart:

1.5x10⁻⁹ = x² / 0.0607-x --> 0.0607

1.5x10⁻⁹ = x² / 0.0607

1.5x10⁻⁹ * 0.0607 = x²

x = [OH⁻] = 9.54x10⁻⁶ M

Now, we can calculate the pOH:

pOH = -log(9.54x10⁻⁶) = 5.02

Finally the pH:

pH = 14 - 5.02

<h2>pH = 8.98</h2>

<u>c) 20 mL of acid added:</u>

In this case the titration it's almost reaching the equivalence point and the acid is still reacting with the base, so we need to know how many moles of the base remains after the volume of added acid:

moles acid = 0.1 * (0.020) = 2x10⁻³ moles

moles base = 0.125 * 0.025 = 3.125x10⁻³

This means that the base is still in higher quantities, and the acid is the limiting reactant here, so the remaining moles will be:

remaining moles of pyridine = 3.125x10⁻³ - 2x10⁻³ = 1.125x10⁻³ moles

The concentration of pyridine in solution:

[C₅H₅N] = 1.125x10⁻³ / (0.025 + 0.020) = 0.025 M

Now with this concentration, we will do the same procedure of before, with the ICE chart, but replacing this new value of the base, to get the [OH⁻] and then the pH:

        C₅H₅N + H₂O <-------> C₅H₅NH⁺ + OH⁻     Kb = 1.5x10⁻⁹

i)       0.025                                0             0

e)        -x                                   +x           +x

c)      0.025-x                             x             x

Writting the Kb expression:

Kb = [C₅H₅NH⁺] [OH⁻] / [C₅H₅N]    replacing the values of the chart:

1.5x10⁻⁹ = x² / 0.025-x --> 0.025

1.5x10⁻⁹ = x² / 0.025

1.5x10⁻⁹ * 0.025 = x²

x = [OH⁻] = 6.12x10⁻⁶ M

Now, we can calculate the pOH:

pOH = -log(6.12x10⁻⁶) = 5.21

Finally the pH:

pH = 14 - 5.21

<h2>pH = 8.79</h2>
5 0
3 years ago
Which atomic model proposed that electrons move in specific orbits around the nucleus of an atom?
Brilliant_brown [7]
Hi there ,
The Bohre's atomic model represents movement of electrons in specific orbit around the nucleus of an atom.
Hope it helps.
4 0
3 years ago
Read 2 more answers
A brass doorknob has a mass of 80grams and a volume of 10cubic centimeters. What is its density?
ki77a [65]

Density = mass/volume = 80 g/10cm³ = 8 g/cm³

5 0
3 years ago
Properties of carbon responsible for the pressence of millions of organic compound ​
Minchanka [31]

Answer:

Carbon has the ability to form very long chains of interconnecting C-C bonds. This property allows carbon to form the backbone of organic compounds, carbon-containing compounds, which are the basis of all known organic life. Nearly 10 million carbon-containing organic compounds are known.

5 0
3 years ago
Other questions:
  • 4/5(2x 5)−4=1
    6·1 answer
  • What was helium used for in the past?
    12·2 answers
  • ______________ is the process of translating a message received into understandable language or symbols.
    12·1 answer
  • How much heat is produced by combustion of 125 g of methanol under standard state conditions?
    11·2 answers
  • What is the answer to SiO2 + C --&gt; Si + CO
    9·1 answer
  • When balancing a redox reaction, you are balancing
    8·1 answer
  • I don't know any of these Chem 1 questions
    11·1 answer
  • Marianne gets dressed and puts on some of her favorite perfume. While applying the perfume, she accidentally gets some in her mo
    14·1 answer
  • Pls help me I’ll mark brainliest
    5·1 answer
  • Is radium usually considered as part of the alkaline earth category in terms of chemistry?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!