Answer:
a)23.2 L
b)68.3kPa
c)7.5 atm
d)60.5L
e)1.67 atm
Explanation:
From Boyle's law:
P1V1=P2V2
P1= 748mmHg
P2=725mmHg
V1= 22.5L
V2??
V2= P1V1/P2= 748×22.5/725= 23.2 L
b)
V1=4.0L
P1= 205×10^3Pa
V2= 12.0L
P2=???
P2= P1V1/V2= 205×10^3×4/12
P2= 68.3×10^3 Pa or 68.3kPa
c)
P1= 1 atm
V1= 196.0L
P2= ??
V2= 26.0L
P2= P1V1/V2=1×196.0/26.0
P2= 7.5 atm
d)
V1= 40.0L
P1= 12.7×10^3Pa
V2=???
P2= 8.4×103Pa
V2= P1V1/P2= 12.7×10^3×40.0/8.4×103
V2=60.5L
e)
V1= 100mL
P1= 1atm
V2= 60mL
P2=???
P2= P1V1/V2= 1×100/60
P2= 1.67 atm
You must know the concentration of the acetic acid. Suppose the concentration is 0.1 M. The solution is as follows:
CH₃COOH → CH₃COO⁻ + H⁺
I 0.1 0 0
C -x +x +x
E 0.1 - x x x
Ka = (x)(x)/(0.1 - x)
1.8×10⁻⁵ = x²/(0.1 - x)
Solving for x,
x = 1.333×10⁻³ = H⁺
pH = -log[H⁺] = -log(1.333×10⁻³)
pH = 2.88
When the little fish die they sink to the bottom, and after time the skeletons build up on top of each other.
Answer:
Explanation:
This is an example of a limiting reactant question, and is very common as a general chemistry problem.
We first see the balanced equation, that is:
2CuCl2+4KI→2CuI+4KCl+I2
We first need to find the limiting reactant
We see that 0.56 g of copper(II) chloride (CuCl2) reacts with 0.64 g of potassium iodide (KI) . So, let's convert those amounts into moles.
Copper(II) chloride has a molar mass of
134.45 g/mol . So in 0.56 g of copper(II) chloride, then there exist
0.56g134.45g/mol≈4.17⋅10−3 mol
Potassium iodide has a molar mass of
166 g/mol . So, in 0.64 g of potassium iodide, there exist
if it wrong i am sorry