D. Changes
Hope this helps :)
When you assume that the gas is behaving ideally, the gas molecules are very far from each other that they do not have any intermolecular forces. If it behaves this way, you can assume the ideal gas equation:
PV = nRT, where
P is the pressure
V is the volume
n is the number of moles
R is a gas constant
T is the absolute temperature
When the process goes under constant pressure (and assuming same number of moles),
P/nR = T/V = constant, therefore,
T₁/V₁=T₂/V₂
If V₂ = V₁(1+0.8) = 1.8V₁, then,
T₂/T₁ = 1.8V₁/V₁
Cancelling V₁,
T₂/300=1.8
T₂ =540 K
If you do not assume ideal gas, you use the compressibility factor, z. The gas equation would now become
PV =znRT
However, we cannot solve this because we don't know the value of z₁ and z₂. There will be more unknowns than given so we won't be able to solve the problem. But definitely, the compressibility factor method is more accurate because it does not assume ideality.
Answer:
3.4moles
Explanation:
Given parameters:
Number of molecules = 2.04 x 10²⁴
Unknown: Number of moles
Solution
We use the concept of mole to solve this kind of problem.
A mole is the amount of substance that contains Avogadro's number of particle i.e 6.02 x 10²³ molecules
Solving
For elementary particles:
Number of moles =
¹ molecules
Number of moles = 
Number of moles of H₂O = 0.34 x 10¹ = 3.4moles
Answer:
the heat can be spread and store up the heat and make the temperature go higher
Explanation:
hope it helps?????