Answer:
Explanation:
b ) The problem is based on Doppler's effect of sound
f = f₀ x (V - v₀) /(
)
f is apparent frequency ,f₀ is real frequency , V is velocity of sound , v₀ is velocity of observer going away ,
is velocity of source going away
778 = 840 x (340 - 14)/ (340 +
)
340 +
= 341.18
= 1.18 m /s
it will go away from the observer or the cyclist.
speed of train = 1.18 m /s
a )
For a stationary observer v₀ = 0
f = f₀ x V /(
)
= 840 x 340 / (340 + 1.180)
= 837 Hz
Answer:
D. 1.33 segundos.
Explanation:
El cuerpo es experimenta un movimiento en caída libre al modificarse su velocidad por efecto de la gravitación terrestre. Este cuerpo alcanza instantáneamente el reposo cuando se encuentra a su altura máxima, el tiempo puede obtenerse sabiendo la aceleración y las velocidades incial y final a partir de la siguiente ecuación cinemática:

Donde:
- Velocidad final del cuerpo, medida en metros por segundo.
- Velocidad inicial del cuerpo, medida en metros por segundo.
- Aceleración gravitacional, medida en metros por segundo al cuadrado.
- Tiempo, medido en segundos.
Ahora se despeja el tiempo:

Si
,
y
, entonces:


Por ende, la respuesta correcta es D.
My worldview is someone who doesn't exist. Someone who isn't real but i want them to BE real. It's not possible to have someone who is alike you. Who is there for yo when you need them
Answer:
201.6 N
Explanation:
m = mass of disk shaped merry-go-round = 125 kg
r = radius of the disk = 1.50 m
w₀ = Initial angular speed = 0 rad/s
w = final angular speed = 0.700 rev/s = (0.700) (2π) rad/s = 4.296 rad/s
t = time interval = 2 s
α = Angular acceleration
Using the equation
w = w₀ + α t
4.296 = 0 + 2α
α = 2.15 rad/s²
I = moment of inertia of merry-go-round
Moment of inertia of merry-go-round is given as
I = (0.5) m r² = (0.5) (125) (1.50)² = 140.625 kgm²
F = constant force applied
Torque equation for the merry-go-round is given as
r F = I α
(1.50) F = (140.625) (2.15)
F = 201.6 N
Answer:

Explanation:
We know that the frequency of the nth harmonic is given by
, where
is the fundamental harmonic. Since we have the values of two consecutive frequencies, we can do:

Which for our values means (we do not need the value of <em>n</em>, that is, which harmonics are the frequencies given):

Now we turn to the formula for the vibration frequency of a string (for the fundamental harmonic):

So the tension is:

Which for our values is:
