The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
In electronics, the SI unit for current is Ampere. It is the amount of charge in Coulombs per unit time. It is named after the father of electrodynamics, Andre-Marie Ampere. Also, the current can be easily determined through the Ohm's Law, which states that current is equal to volts divided by the resistance. The answer is letter D.
By the formula of torque balance we know that

here we know that
r = distance of force
F = applied force
so here we know that as we will take large edge knife then the distance of force will increase
due to this the torque will also increase in it so it is easy to pear it
So here we can say


so output force will increase in this case
So here the correct answer would be
<em>b. the longer the knife, the stronger the output force</em>