Answer: Regarding the image posted, a unicellular paramecium relies on mitosis for reproduction.
I hope this helps!
A) 4.7 cm
The formula for the angular spread of the nth-maximum from the central bright fringe for a diffraction from two slits is

where
n is the order of the maximum
is the wavelength
is the distance between the slits
In this problem,
n = 5


So we find

And given the distance of the screen from the slits,

The distance of the 5th bright fringe from the central bright fringe will be given by

B) 8.1 cm
The formula to find the nth-minimum (dark fringe) in a diffraction pattern from double slit is a bit differente from the previous one:

To find the angle corresponding to the 8th dark fringe, we substitute n=8:

And the distance of the 8th dark fringe from the central bright fringe will be given by

Use Newton's second law to determine the acceleration being applied to the sled. There are three forces at work on the sled (its weight, the force normal to the ground, and friction) but two of them cancel, leaving friction as the only effective force. This vector is pointed in the opposite direction of the sled's movement, so if we take the direction of its movement to be the positive axis, we would find the acceleration due to the friction to be

Now we use the formula

to find the distance it travels. The sled comes to a rest, so
, and let's take the starting position
to be the origin. Then the distance traveled
is

Answer:
This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant.
U = (1/2)kx^2
U = (1/2)(5.3)(3.62-2.60)^2
U = 2.75706 J
Read more on Brainstorm - httpd://brainstorm/question/7981441#read more
Explanation: