Answer:
c. They hit at the same time
b. BGS
Explanation:
A marble dropped (initial vertical velocity is 0) will land at the same time as a marble launched horizontally (initial vertical velocity is 0) from the same height.
Boat S has a net speed of 5 m/s (10 − 5).
Boat B has a net speed of 15 m/s (10 + 5).
Boat G has a net speed of ≈11.2 m/s (√(10² + 5²)).
Answer:
A physical trait is visible to the naked eye, such as, having six fingers; and a character trait is invisible to the naked eye, such as, being charming. Both can be subjective, for instance, claiming somebody has a big nose is a subjective comment about somebody's physical appearance.
Infrared, visible light, then ultraviolet. Infrared is light that the human eye can not see and visible light is clearly light we can see then ultraviolet is has such a high frequency we can't see it either.
The work done by the centripetal force during om complete revolution is 401.92 J.
<h3>What is centripetal force?</h3>
Centripetal force is a force that acts on a body undergoing a circular motion and is directed towards the center of the circle in which the body is moving.
To Calculate the work done by the centripetal force during one complete revolution, we use the formula below.
Formula:
- W = (mv²/r)2πr
- W = 2πmv²................... Equation 1
Where:
- W = Work done by the centripetal force
- m = mass of the ball
- v = velocity of the ball
- π = pie
From the question,
Given:
- m = 16 kg
- v = 2 m/s
- π = 3.14
Substitute these values into equation 1
Hence, The work done by the centripetal force during om complete revolution is 401.92 J.
Learn more about centripetal force here: brainly.com/question/20905151
Answer:
Simple harmonic motion is the movement of a body or an object to and from an equilibrium position. In a simple harmonic motion, the maximum displacement (also called the amplitude) on one side of the equilibrium position is equal to the maximum displacement.
The force acting on an object must satisfy Hooke's law for the object to undergo simple harmonic motion. The law states that the force must be directed always towards the equilibrium position and also directly proportional to the distance from this position.