Answer:
The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Explanation:
Given that,
Mass = 2.15 kg
Distance = 0.0895 m
Amplitude = 0.0235 m
We need to calculate the spring constant
Using newton's second law

Where, f = restoring force


Put the value into the formula


We need to calculate the kinetic energy of the mass
Using formula of kinetic energy

Here, 

Here, 


Put the value into the formula


Hence, The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Answer:
A fuse and circuit breaker both serve to protect an overloaded electrical circuit by interrupting the continuity, or the flow of electricity. ... Fuses tend to be quicker to interrupt the flow of power, but must be replaced after they melt, while circuit breakers can usually simply be reset.
Explanation:
<h2> Answers</h2>
1.Electromagnetic waves
2.Electromagnetic radiation
3.Electromagneticwaves
Answer:
r₂ = 0.2 m
Explanation:
given,
distance = 20 m
sound of average whisper = 30 dB
distance moved closer = ?
new frequency = 80 dB
using formula

I₀ = 10⁻¹² W/m²
now,



to hear the whisper sound = 80 dB



we know intensity of sound is inversely proportional to square of distances



r₂ = 0.2 m
In this item, we are asked to determine the speed of the bobsled given the distance traveled and the time it takes to cover the certain distance. This can mathematically be expressed as,
speed = distance / time
Substituting the given values in this item,
speed = (113 m) / (29 s)
speed = 3.90 m/s
<em>ANSWER: 3.90 m/s</em>