Answer:
ΔH° = -186.2 kJ
Explanation:
Hello,
This case in which the Hess method is applied to compute the required chemical reaction. Thus, we should arrange the given first two reactions as:
(1) it is changed as:
SnCl2(s) --> Sn(s) + Cl2(g)...... ΔH° = 325.1 kJ
That is why the enthalpy of reaction sign is inverted.
(2) remains the same:
Sn(s) + 2Cl2(g) --> SnCl4(l)......ΔH° = -511.3 kJ
Therefore, by adding them, we obtain the requested chemical reaction:
(3) SnCl2(s) + Cl2(g) --> SnCl4(l)
For which the enthalpy change is:
ΔH° = 325.1 kJ - 511.3 kJ
ΔH° = -186.2 kJ
Best regards.
freezing. Think of what happens when you put water in the freezer
Empirical formula: Li4OH
Answer:
1 mole: 44.771 g
1 gram = 0.022 mole
Explanation:
Element: Li
Percentage by mass: 62.01%
Number of atoms: 4
Mass of atom;: 6.941
Element: O
Percentage by mass: 35.74%
Number of atoms: 1
Mass of atom: 15.9994
Element: H
Percentage by mass: 2.25%
Number of atoms: 1
Mass of atom: 1.00794
The answer is 123
Brainliest??
Answer:
The amount of heat required to vaporize 2.58 kg of water at its boiling point is 5,830.8 kJ.
Explanation:
A substance undergoes a change in temperature when it absorbs or gives up heat to the environment around it. However, when a substance changes phase it absorbs or gives up heat without causing a change in temperature. The heat Q that is necessary for a mass m of a certain substance to change phase is equal to:
Q = m*L
where L is called the latent heat of the substance.
In this case:
- m=2.58 kg
- The heat of vaporization of water is L=2260*10³ J/kg
Replacing:
Q= 2.58 kg* 2260*10³ J/kg
Q= 5,830,800 J = 5,830.8 kJ (Being 1,000 J= 1 kJ)
<u><em>The amount of heat required to vaporize 2.58 kg of water at its boiling point is 5,830.8 kJ.</em></u>