Answer:
Q=25.7 Kj
Explanation:
76.941 g H2O*1 mol/18.016= 4.27 Mol H20
(4.27 Mol H2O)(6.009 Kj/Mol)
Q=25.7 Kj
Answer:
Mass of iron = 59.375 gm
Explanation:
Calories ( or joules) are added to the water by the hot steel so at the endpoint they are BOTH at 40 C
The water gains:
4.18 j/g-C * 50 * (40-30 C) = 2090 j
The steel gave up 2090 j going from 120 to 40 C
2090 = .44 j/g-C * m * (120-40) solve fro m = 59.375 gm
Taking into account the reaction stoichiometry, you can observe that:
- one mole of Ca₃P₂ produces 2 mol of PH₃.
- the mole ratio between phosphine and calcium phosphide is 2 mol PH₃ over 1 mol Ca₃P₂.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
Ca₃P₂ + 6 H₂O → 3 Ca(OH)₂ + 2 PH₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Ca₃P₂:1 mole
- H₂O: 6 moles
- Ca(OH)₂: 3 moles
- PH₃: 2 moles
The molar mass of the compounds is:
- Ca₃P₂: 182 g/mole
- H₂O: 18 g/mole
- Ca(OH)₂: 74 g/mole
- PH₃: 34 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- Ca₃P₂: 1 mole ×182 g/mole= 182 grams
- H₂O: 6 moles× 18 g/mole= 108 grams
- Ca(OH)₂: 3 moles ×74 g/mole= 222 grams
- PH₃: 2 moles ×34 g/mole= 68 grams
<h3>Correct statements</h3>
Then, by reaction stoichiometry, you can observe that:
- one mole of Ca₃P₂ produces 2 mol of PH₃.
- the mole ratio between phosphine and calcium phosphide is 2 mol PH₃ over 1 mol Ca₃P₂.
Learn more about the reaction stoichiometry:
<u>brainly.com/question/24741074</u>
<u>brainly.com/question/24653699</u>
The partial pressure of 0.50 Ne gas is 214.71 torr
calculation
the partial pressure of Ne = moles of Ne/total moles x final pressure
find the total moles of the air mixture
that is moles of Ne + moles of K= 0.50 + 1.20 = 1.70 moles
The partial pressure is therefore = 0.50 /1.70 x 730 = 214.71 torr
I remember coming across this question and the options were:
KOH, HCN, NH₃, HI, Sr(OH)₂
Now, a substance with a low pH is one that dissociates completely in water to release hydrogen ions, while basic substances dissociate completely to release hydroxide ions. Therefore, in the order of increasing pH:
HI, HCN, NH₃, Sr(OH)₂, KOH