Answer:
a. The apparatus required to purify gypsum sample are: Bunsen burner, beaker, Filter Funnel, stirring rod, the filter paper.
b. Gypsum is a sulfate mineral that is made up of calcium sulfate dihydrate. Step-by-step instruction to purify gypsum sample is as follows:
1. Add water to the gypsum sample in a beaker.
2. Use the stirring rod to mix the mixture well.
3. Filter off the excess solid from the mixture using the filter paper and filter funnel.
4. Put the filtered mixture over the bunsen burner and evaporate the excess water from the mixture.
5. Allow the hot liquid to cool down and filter it again through the filter paper to get the pure gypsum.
The mass in grams of butane at standard room temperature is 53.21 grams.
<h3>How can we determine the mass of an organic substance at room temperature?</h3>
The gram of an organic substance at room temperature can be determined by using the ideal gas equation which can be expressed as:
PV = nRT
- Pressure = 1.00 atm
- Volume = 22.4 L
- Rate = 0.0821 atm*L/mol*K
- Temperature = 25° C = 298 k
1 × 22.4 L = n × (0.0821 atm*L/mol*K× 298 K)
n = 22.4/24.4658 moles
n = 0.91556 moles
Recall that:
- number of moles = mass(in grams)/molar mass
mass of butane = 0.91556 moles × 58.12 g/mole
mass of butane = 53.21 grams
Learn more about calculating the mass of an organic substance here:
brainly.com/question/14686462
#SPJ12
Answer:
18.2 g.
Explanation:
You need to first figure out how many moles of nitrogen gas and hydrogen (gas) you have. To do this, use the molar masses of nitrogen gas and hydrogen (gas) on the periodic table. You get the following:
0.535 g. N2 and 1.984 g. H2
Then find out which reactant is the limiting one. In this case, it's N2. The amount of ammonia, then, that would be produced is 2 times the amount of moles of N2. This gives you 1.07 mol, approximately. Then multiply this by the molar mass of ammonia to find your answer of 18.2 g.
Produces almost half of out nation's electricity
The melting of solid wax to form liquid wax and the evaporation of liquid wax to form wax vapor are physical changes. The burning of the wax vapor is a chemical change.