Answer:
cocooooooooooooooooooooooooooo
Explanation:
3n\hj 3ihhjcvyh 6]0u70-uh]h ]]huc7]]uh uhu-hu -u h-u7-u37-]u3- -7u7uh5h57h0u70y c0yuuh-u-]u]3u3 cuyuycuy0nuy0yc6udy8056uy08
Answer:
Temperature and volume are directly related.
The volume of a given gas sample is directly proportional to its absolute temperature at constant pressure. :)
Answer:
Taking into account the definition of average atomic mass and isotopes of an element, the information that you need is the masses of its isotopes and their percent abundances.
Each chemical element is characterized by the number of protons in its nucleus, which is called the atomic number Z.
But in the nucleus of each element it is also possible to find neutrons, whose number can vary. The atomic mass (A) is obtained by adding the number of protons and neutrons in a given nucleus.
The same chemical element can be made up of different atoms, that is, their atomic numbers are the same, but the number of neutrons is different. These atoms are called isotopes of the element.
The atomic mass of an element is the weighted average mass of its natural isotopes. Therefore, the atomic mass of an element is not a whole number.
The weighted average means that not all isotopes have the same percentage.
In other words, the atomic masses of chemical elements are usually calculated as the weighted average of the masses of the different isotopes of each element, taking into account the relative abundance of each of them.
Explanation:
Answer:
The protonated form is predominant when aspirin is absorbed more readily. The ratio of conjugate base to acid is 1 to 100.
Explanation:
Aspirin is more readily absorbed when it is protonated, that is when pH is lower than pKa (<em>more H⁺ available in the medium</em>). We can confirm this using Henderson-Hasselbalch equation for pH = 1.5:

When aspirin is absorbed more readily the ratio of conjugate base to acid is 1 to 100, being the acid the <em>predominant</em> form.
The combustion of methane, CH4, releases 890.4 kJ/mol. That is, when one mole of methane is burned, 890.4 kJ are given off to the surroundings. This means that the products have 890.4 kJ less than the reactants.