Answer:
c. By itself, heme is not a good oxygen carrier. It must be part of a larger protein to prevent oxidation of the iron.
e. Both hemoglobin and myoglobin contain a prosthetic group called heme, which contains a central iron ( Fe ) (Fe) atom.
f. Hemoglobin is a heterotetramer, whereas myoglobin is a monomer. The heme prosthetic group is entirely buried within myoglobin.
Explanation:
The differences between hemoglobin and myoglobin are most important at the level of quaternary structure. Hemoglobin is a tetramer composed of two each of two types of closely related subunits, alpha and beta. Myoglobin is a monomer (so it doesn't have a quaternary structure at all). Myoglobin binds oxygen more tightly than does hemoglobin. This difference in binding energy reflects the movement of oxygen from the bloodstream to the cells, from hemoglobin to myoglobin.
Myoglobin binds oxygen
The binding of O 2 to myoglobin is a simple equilibrium reaction:
Answer:
Accuracy of a measured value refers to how close a measurement is to the correct value. The uncertainty in a measurement is an estimate of the amount by which the measurement result may differ from this value. Precision of measured values refers to how close the agreement is between repeated measurements.
Explanation:
An atom is the smallest unit of ordinary matter that forms a chemical element.
oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus.
We have to add the both half cell equations and eliminate the number of electrons lost/gained.
<h3>What modification must Kim make to the equations?</h3>
The term redox reaction is a type of reaction that occurs when an electron is lost or gained in a reaction system. We can see that in this reaction, zinc looses two electron which are gained by copper.
If we want to obtain the equation 4.9 which is the overall equation of the redox reaction from the various half cell equations then we have to add the both half cell equations and eliminate the number of electrons lost/gained.
Learn kore about redox reaction:brainly.com/question/13293425
#SPJ1
The answer is D. Most common semiconducting materials are crystalline solids. A<span>morphous and liquid semiconductors are also known to be.</span>