Answer:
ΔH°r = -483.64 kJ
Explanation:
Let's consider the following balanced equation.
2 H₂(g) + O₂(g) ⇒ 2 H₂O(g)
We can calculate the standard enthalpy change of the reaction (ΔH°r) using the following expression.
ΔH°r = ∑ΔH°f(p) × np - ∑ΔH°f(r) × nr
where
ΔH°f: standard heat of formation
n: moles
p: products
r: reactants
ΔH°r = ΔH°f(H₂O(g)) × 2 mol - ΔH°f(H₂(g)) × 2 mol - ΔH°f(O₂(g)) × 1 mol
ΔH°r = (-241.82 kJ/mol) × 2 mol - 0 kJ/mol × 2 mol - 0 kJ/mol × 1 mol
ΔH°r = -483.64 kJ
Answer:
the final mole of the flexible container = 12.92 moles
Explanation:
Given that :
initial volume of a flexible container = 6.13 L
initial mole of a flexible container = 6.51 mol
final volume of a flexible container = 18.3 L
final mole of a flexible container = ???
Assuming the pressure and temperature of the gas remain constant, calculate the number of moles of gas added to the container.
Therefore,


n = 19.43

19.43 = 6.51 + n₂
n₂ = 19.43 - 6.51
n₂ = 12.92 moles
Thus; the final mole of the flexible container = 12.92 moles
Answer:
C.) 3 is the correct answer
In English
7. Name the elements found in nature in diatomatic form.
8. What is the difference between double and triple single link?
Answer:
Explanation:
Did you mean: V = d/t a = (V - Vit Average = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = -9.81 m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Showing results for V = d/t a = (V - Vil/t Vaverage = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = "-9.81" m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Search instead for V = d/t a = (V - Vil/t Vaverage = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = -9.81 m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?