They have the same number of electrons in their outer shells. Elements in the same group often share similar chemical properties because the outer electrons generally determine a lot of their properties
1.1214 mL will a 0.205-mole sample of He occupy at 3.00 atm and 200 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Using equation PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 3.00 atm
V= ?
n=0.205 mole
R= 
T=200 K
Putting value in the given equation:


V= 1.1214 mL
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Data:
M (molarity) = 1.75 M (mol/L)
m (mass) = 35 g
MM (molar Mass) of NaCl = 58.44 g/mol
V (volume) = ? (in liters)
Formula:

Solving:





18 x 10^23. This is the answer because there are 6.022 x 10^23 atoms of carbon and 12.044 x 10^23 atoms of oxygen in one mole of CO2, if you combine them, you get 18 x 10^23