Answer:
Measure 2.47 mL of the stock solution (i.e 0.0405 mM) and dilute it to the 100 mL mark with water
Explanation:
To make 100 mL of 0.001 mM solution from 0.0405mM solution, we need to determine the volume of 0.0405mM solution needed. This can be obtained as follow:
Molarity of stock (M₁) = 0.0405 mM
Volume of diluted (V₂) = 100 mL
Molarity of diluted solution (M₂) = 0.001 mM
Volume of stock solution needed (V₁) =?
M₁V₁ = M₂V₂
0.0405 × V₁ = 0.001 × 100
0.0405 × V₁ = 0.1
Divide both side by 0.0405
V₁ = 0.1 / 0.0405
V₁ = 2.47 mL
Therefore, to make 100 mL of 0.001 mM solution from 0.0405mM solution, measure 2.47 mL of the stock solution (i.e 0.0405 mM) and dilute it to the 100 mL mark with water.
Answer:
2.60 moles of A remaining.
Explanation:
According to Le Chatelier's principle, the equilibrium would shift if the volume, concentration, pressure, or temperature changes.
In this question, we were told that the volume doubles, that implies that we would have to double the molarity of B/ C (since B=C.)
However, it is obvious and clear from the given equation of the reaction that A is solid in it's activity = 1. Hence, it is then ignored.
So doubling B would be 1.30 M × 2 = 2.60 M
i.e 2.60 M moles of A was consumed.
Now; the number of moles of A remaining is 5.20 - 2.60 = 2.60 moles of A remaining.
Have the same acceleration/reach the ground at the same time.
<em>Que quieres clasificar?.... Yo te puedo ayudar si quieres pero dime que quieres clasificar.</em>
A MOLECULE
A molecule is a true representative of a covalent bond.