<h2>Answer: electromagnetic spectrum
</h2>
The electromagnetic spectrum is the set of electromagnetic radiations distributed in their different frequencies or wavelengths, which in turn are related to their energy.
If we go from the smallest wavelengths known up to now (because according to physics the electromagnetic spectrum is infinite and continuous) to the longest, the electromagnetic spectrum covers the following radiations:
Gamma rays, X-rays, ultraviolet, visible light (all the colors we are able to see), infrared, radio waves and microwaves.
Where those with shorter wavelength (or higher frequency) have more energy than those with a longer wavelength.
Gravity pulls objects down to the earth
It is 800 N FN = 600N + 200 N = 800 N Answer to your question: The net force is all Newton's second law. It is the force that acts on a body or a particle. for example: It is the force we make when we push a car or something heavy that is in a straight line. .
Answer:
31.2 m/s
Explanation:
= Frequency of approach = 480 Hz
= Frequency of going away = 400 Hz
= Speed of sound in air = 343 m/s
= Speed of truck
Frequency of approach is given as
eq-1
Frequency of moving awayy is given as
eq-2
Dividing eq-1 by eq-2


= 31.2 m/s
Answer:
t = 4 s
Explanation:
As we know that the particle A starts from Rest with constant acceleration
So the distance moved by the particle in given time "t"



Now we know that B moves with constant speed so in the same time B will move to another distance

now we know that B is already 349 cm down the track
so if A and B will meet after time "t"
then in that case


on solving above kinematics equation we have
