Formic acid is the simplest carboxylic acid with a structure of HCOOH and has a pka of 3.75. The pka refers to the acidity of the molecule, which in this example refers to the molecules ability to give up the proton of the O-H. A decrease in the pka value corresponds to an increase in acidity, or an increase in the ability to give up a proton. When an acid gives up a proton, the remaining anionic species (in this case HCOO-) is called the conjugate base, and an increase in the stability of the conjugate base corresponds to an increase in acidity.
The pka of a carboxylic can be affected greatly by the presence of various functional groups within its structure. An example of an inductive effect changing the pka can be shown with trichloroacetic acid, Cl3CCOOH. This molecule has a pka of 0.7. The decrease in pka relative to formic acid is due to the presence of the Cl3C- group, and more specifically the presence of the chlorine atoms. The electronegative chlorine atoms are able to withdraw the electron density away from the oxygen atoms and towards themselves, thus helping to stabilize the negative charge and stabilize the conjugate base. This results in an increase in acidity and decrease in pka.
The same Cl3CCOOH example can be used to explain how dipoles can effect the acidity of carboxylic acids. Compared to standard acetic acid, H3CCOOH with a pka of 4.76, trichloroacetic acid is much more acidic. The difference between these structures is the presence of C-Cl bonds in place of C-H bonds. A C-Cl bond is much more polar than a C-H bond, due the large electronegativity of the chlorine atom. This results in a carbon with a partial positive charge and a chlorine with a partial negative charge. In the conjugate base of the acid, where the molecule has a negative charge localized on the oxygen atoms, the dipole moment of the C-Cl bond is oriented such that the partial positive charge is on the carbon that is adjacent to the oxygen atoms containing the negative charge. Therefore, the electrostatic attraction between the positive end of the C-Cl dipole and the negative charge of the anionic oxygen helps to stabilize the entire species. This level of stabilization is not present in acetic acid where there are C-H bonds instead of C-Cl bonds since the C-H bonds do not have a large dipole moment.
To understand how resonance can affect the pka of a species, we can simply compare the pka of a simple alcohol such as methanol, CH3OH, and formic acid, HCOOH. The pka of methanol is 16, suggesting that is is a very weak acid. Once methanol gives up that proton to become the conjugate base CH3O-, the charge cannot be stabilized in any way and is simply localized on the oxygen atom. However, with a carboxylic acid, the conjugate base, HCOO-, can stabilize the negative charge. The lone pair electrons containing the charge on the oxygen atom are able to migrate to the other oxygen atom of the carboxylic acid. The negative charge can now be shared between the two electronegative oxygen atoms, thus stabilizing the charge and decreasing the pka.
Given what we know, we can confirm that as with any experiment, the control variable will be the one that through each trial of the experiment, no matter how many times it is performed, stays constant.
<h3>What is a controlled variable?</h3>
- A variable that remains constant through an experiment.
- They are used to compare results to the normal condition.
- They are also used to isolate the changes to one factor at a time and thus know its exact effects on the outcome.
- This increases the accuracy of the data and the subsequent conclusion.
Therefore, we can confirm that if a variable stays constant through each phase and trial of an experiment, it is considered to be a controlled variable and is useful in order to increase the accuracy of the conclusion.
To learn more about control variables visit:
brainly.com/question/17555102?referrer=searchResults
Answer:
The answer is
<h2>91.9 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of copper = 10.3 mL
density = 8.92 g/mL
The mass is
mass = 8.92 × 10.3 = 91.876
We have the final answer as
<h3>91.9 g</h3>
Hope this helps you
Answer:
Alcohol in Your Body
Alcohol reaches your brain in only five minutes, and starts to affect you within 10 minutes. After 20 minutes, your liver starts processing alcohol. On average, the liver can metabolize 1 ounce of alcohol every hour.
Explanation:
hope that helps you i just love sharing glmv sorry
There are three carbon and 8 hydrogen present in propane molecule. The Lewis structure of propane is shown as:
Three molecules of such carbon atoms bound to eight molecules with hydrogen atoms make up the organic complex propane molecule.
It is known that carbon has 4 valence electrons and hydrogen has one valence electron. Carbon needs 4 extra electrons to complete its octet hence, it will share its electrons with with 4 hydrogen atom and complete its octet.
Carbon will be formed 4 bond . Three bond with hydrogen and one bond with carbon atom.
To know more about Lewis structure.
brainly.com/question/15837141
#SPJ4