Answer is: 5.22·10²² atoms of Iodine.
m(CaI₂) = 12.75 g; mass of calcium iodide.
M(CaI₂) = 293.9 g/mol; molar mass of calcium iodide.
n(CaI₂) = m(CaI₂) ÷ M(CaI₂).
n(CaI₂) = 12.75 g ÷ 293.9 g/mol.
n(CaI₂) = 0.043 mol; amount of calcium iodide.
In one molecule of calcium iodide, there are two iodine atoms
n(I) = 2 · n(CaI₂).
n(I) = 0.086 mol; amount of iodine atoms.
Na = 6.022·10²³ 1/mol; Avogadro number.
N(I) = n(I) · Na.
N(I) = 0.086 mol · 6.022·10²³ 1/mol.
N(I) = 5.22·10²²; number of iodine atoms.
Answer:
The correct answer is due to the difference in pressure inside and outside the bottle.
Explanation:
Liquids have melting and boiling points that depend on pressure and temperature. The pressure inside the bottle is higher than the pressure outside. This causes the melting point to drop, making the liquid freeze at a lower temperature than if it were at atmospheric pressure, and therefore has a lower temperature than it would freeze at atmospheric pressure. When the bottle is uncovered, the liquid becomes an atmospheric pressure, and due to the temperature acquired when the bottle was closed the liquid freezes.
Have a nice day!
Answer:
they are similar becauze they measure temperature
Lunch of a patient has 3 oz skinless chicken, 3 oz of broccoli, 1 medium apple, and 1 cup of nonfat milk
Energy content of 3 oz skinless chicken is = 110 kcal
Energy content of 3 oz broccoli = 30 kcal
Energy content of 1 medium apple = 60 kcal
Energy content of 1 cup non-fat milk = 90 kcal
So the kilocalories of energy patient obtained from lunch
= 110 kcal+ 30 kcal + 60 kcal + 90 kcal = 290 kcal