1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lidiya [134]
2 years ago
15

In order to avoid a rollover, what is the highest degree incline one should mow on? 10-degree incline 5-degree incline 30-degree

incline 20-degree incline
Engineering
1 answer:
ser-zykov [4K]2 years ago
6 0

Answer: B: 20-degree incline

Explanation:

A tractor user should avoid slopes of more than 20 degrees in order to avoid rollovers

You might be interested in
The soil borrow material to be used to construct a highway embankment has a mass unit weight of 107.0 lb/cf and a water content
MrRissso [65]

Answer:

Option D

Explanation:

Given information

Bulk unit weight of 107.0 lb/cf

Water content of 7.3%,=0.073

Specific gravity of the soil solids is 2.62

Specifications

Dry unit weight is 113 lb/cf  

Water content is 6%.

Volume of embankment is 440,000-cy

Borrow material

Dry_{unit,weight}=\frac {bulk_{unit,weight}}{1+water_{content}}=\frac {107}{1+0.073}= 99.72041 lb/cf  

Embankment

Considering that the volume of embankment is inversely proportional to the dry unit weight

\frac {V_{embankment}}{V_{borrow}}=\frac {Dry_{borrow}}{Dry_{embankment}}

Therefore, V_{borrow}=V_{embankment} *\frac {Dry_{embarkement}}{Dry_{borrow}}

V_{borrow}=440,000-cy*\frac {113 lb/cf }{99.72041 lb/cf }= 498594-cy

Therefore, volume of borrow material is 498594-cy

(b)

The weight of water in embankment is found by multiplying the moisture content and dry unit weight.

Assuming that all the specifications are achieved, weight of water in embankment=0.06*113=6.78 lb/cf

Since 1 yd^{3}= 27 ft^{3}

The embankment requires water of  6.78*27*440000= 80546400 lb

Borrow materials’ water will also be 0.073*99.72041=7.27959 lb/cf

Borrow material requires water of 7.27959*27*498594=97998120 lb

Extra water between borrow material and embankment=97998120 lb-80546400 lb=17451720 lb

Unit_{weight}=\frac {17451720}{498594}=35.00186 lb

1 gallon is approximately 8.35 yd^{3} hence

\frac {35.00186 lb/yd^{3}}{8.35}=4.19184 gallons/yd^{3}

That's approximately 4.2 gallons

7 0
3 years ago
Air at 26 kPa, 230 K, and 220 rn/s enters a turbojet engine in flight. The air mass flow rate is 25 kg/s. The compressor pressur
Paha777 [63]

Answer:

Explanation:

Answer:

Explanation:

Answer:  

Explanation:  

This is a little lengthy and tricky, but nevertheless i would give a step by step analysis to make this as simple as possible.  

(a). here we are asked to determine the Temperature and Pressure.  

Given that the properties of Air;  

ha = 230.02 KJ/Kg  

Ta = 230 K  

Pra = 0.5477  

From the energy balance equation for a diffuser;  

ha + Va²/2 = h₁ + V₁²/2  

h₁ = ha + Va²/2 (where V₁²/2 = 0)  

h₁ = 230.02 + 220²/2 ˣ 1/10³  

h₁ = 254.22 KJ/Kg  

⇒ now we obtain the properties of air at h₁ = 254.22 KJ/Kg  

from this we have;  

Pr₁ = 0.7329 + (0.8405 - 0.7329)[(254.22 - 250.05) / (260.09 - 250.05)]  

Pr₁ = 0.77759  

therefore T₁ = 254.15K  

P₁ = (Pr₁/Pra)Pa  

= 0.77759/0.5477 ˣ 26  

P₁ = 36.91 kPa  

now we calculate Pr₂  

Pr₂ = Pr₁ (P₂/P₁) = 0.77759 ˣ 11 = 8.55349  

⇒ now we obtain properties of air at  

Pr₂ = 8.55349 and h₂ = 505.387 KJ/Kg  

calculating the enthalpy of air at state 2  

ηc = h₁ - h₂ / h₁ - h₂  

0.85 = 254.22 - 505.387 / 254.22 - h₂  

h₂ = 549.71 KJ/Kg  

to obtain the properties of air at h₂ = 549.71 KJ/Kg  

T₂ = 545.15 K

⇒ to calculate the pressure of air at state 2

P₂/P₁ = 11

P₂ = 11 ˣ 36.913  

p₂ = 406.043 kPa

but pressure of air at state 3 is the same,

i.e. P₂ = P₃ = 406.043 kPa

P₃ = 406.043 kPa

To obtain the properties of air at  

T₃ = 1400 K, h₃ = 1515.42 kJ/Kg and Pr = 450.5

for cases of turbojet engine,

we have that work output from turbine = work input to the compressor

Wt = Wr

(h₃ - h₄) = (h₂ - h₁)

h₄ = h₃ - h₂ + h₁  

= 1515.42 - 549.71 + 254.22

h₄ = 1219.93 kJ/Kg

properties of air at h₄ = 1219.93 kJ/Kg

T₄ = 1140 + (1160 - 1140) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

T₄ = 1150.58 K

Pr₄ = 193.1 + (207.2 - 193.1) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

Pr₄ = 200.5636

Calculating the ideal enthalpy of the air at state 4;

Лr = h₃ - h₄ / h₃ - h₄*

0.9 = 1515.42 - 1219.93 / 1515.42 - h₄  

h₄* = 1187.09 kJ/Kg

now to obtain the properties of air at h₄⁻ = 1187.09 kJ/Kg

P₄* = 179.7 + (193.1 - 179.7) [(1187.09 -1184.28) / (1207.57 - 1184.28)]

P₄* = 181.316

P₄ = (Pr₄/Pr₃)P₃       i.e. 3-4 isentropic process

P₄ = 181.316/450.5 * 406.043

P₄ = 163.42 kPa

For the 4-5 process;

Pr₅ = (P₅/P₄)Pr₄

Pr₅ = 26/163.42 * 200.56 = 31.9095

to obtain the properties of air at Pr₅ = 31.9095

h₅= 724.04 + (734.82 - 724.04) [(31.9095 - 3038) / (32.02 - 30.38)]

h₅ = 734.09 KJ/Kg

T₅ = 710 + (720 - 710) [(31.9095 - 3038) / (32.02 - 30.38)]

T₅ = 719.32 K

(b) Now we are asked to calculate the rate of heat addition to the air passing through the combustor;

QH = m(h₃-h₂)

QH = 25(1515.42 - 549.71)

QH = 24142.75 kW

(c). To calculate the velocity at the nozzle exit;

we apply steady energy equation of a flow to nozzle

h₄ + V₄²/2 = h₅ + V₅²/2

h₄  + 0  = h₅₅ + V₅²/2

1219.9 ˣ 10³ = 734.09 ˣ 10³ + V₅²/2

therefore, V₅ = 985.74 m/s

cheers i hope this helps

6 0
3 years ago
Science, Technology, Engineering & Mathematics
miv72 [106K]

A communication systems

4 0
3 years ago
a cantilever beam 1.5m long has a square box cross section with the outer width and height being 100mm and a wall thickness of 8
djverab [1.8K]

Answer:

a) 159.07 MPa

b) 10.45 MPa

c) 79.535 MPa

Explanation:

Given data :

length of cantilever beam = 1.5m

outer width and height = 100 mm

wall thickness = 8mm

uniform load carried by beam  along entire length= 6.5 kN/m

concentrated force at free end = 4kN

first we  determine these values :

Mmax = ( 6.5 *(1.5) * (1.5/2) + 4 * 1.5 ) = 13312.5 N.m

Vmax = ( 6.5 * (1.5) + 4 ) = 13750 N

A) determine max bending stress

б = \frac{MC}{I}  =  \frac{13312.5 ( 0.112)}{1/12(0.1^4-0.084^4)}  =  159.07 MPa

B) Determine max transverse shear stress

attached below

   ζ = 10.45 MPa

C) Determine max shear stress in the beam

This occurs at the top of the beam or at the centroidal axis

hence max stress in the beam =  159.07 / 2 = 79.535 MPa  

attached below is the remaining solution

6 0
3 years ago
. Chemical manufacturers must present which Information on the product's label?
STatiana [176]

Answer: A) Product identifier

Explanation:

A product identifier is a means, name or number used to identify hazardous and dangerous chemicals on a label or in the SDS( safety data sheet). It provides a special means which helps the user to identify the chemical. Any product identifier used should permit a cross-references to be made among the listed hazardous chemicals required in the written hazard communication program, and the label including SDS(safety data sheet).

5 0
3 years ago
Other questions:
  • Work-producing devices that operate on reversible processes deliver the most work, and work-consuming devices that operate on re
    6·1 answer
  • Question 5 (20 pts) The rated current of a three-phase transmission line is 300 A. The currents flowing by the line are measured
    6·1 answer
  • The voltage across a device and the current through it are:
    9·2 answers
  • This is a blueprint drawing of the stage area at Millennium Park. The length of one square on the grid is equal to 5 feet. Accor
    14·1 answer
  • The motion of a particle is defined by the relation x = t3 – 6t2 + 9t + 3, where x and t are expressed in feet and seconds, resp
    12·1 answer
  • Air is to be heated steadily by an 8-kW electric resistance heater as it flows through an insulated duct. If the air enters at 5
    10·1 answer
  • Wiring harnesses run
    12·1 answer
  • Benzene gas (C6H6) at 25° C and 1 atm, enters a combustion chamber operating at steady state and burns with 95% theoretical air
    6·2 answers
  • The convection heat transfer coefficient for a clothed person standing in moving air is expressed as h 5 14.8V0.69 for 0.15 , V
    6·2 answers
  • Hi all, could you solve this please?<br> What is the value of the resistance R
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!