Answer:
Explanation:
The image attached to the question is shown in the first diagram below.
From the diagram given ; we can deduce a free body diagram which will aid us in solving the question.
IF we take a look at the second diagram attached below ; we will have a clear understanding of what the free body diagram of the system looks like :
From the diagram; we can determine the length of BC by using pyhtagoras theorem;
SO;






The cross -sectional of the cable is calculated by the formula :

where d = 4mm

A = 1.26 × 10⁻⁵ m²
However, looking at the maximum deflection in length
; we can calculate for the force
by using the formula:


where ;
E = modulus elasticity
= length of the cable
Replacing 1.26 × 10⁻⁵ m² for A; 200 × 10⁹ Pa for E ; 7.2111 m for
and 0.006 m for
; we have:

---- (1)
Similarly; we can determine the force
using the allowable maximum stress; we have the following relation,


where;
maximum allowable stress
Replacing 190 × 10⁶ Pa for
; we have :
------ (2)
Comparing (1) and (2)
The magnitude of the force
since the elongation of the cable should not exceed 6mm
Finally applying the moment equilibrium condition about point A






P = 1.9937 kN
Hence; the maximum load P that can be applied is 1.9937 kN
Answer:
Explanation:
4140-40 I’d pick wood
I hope this helps! :)
Answer:
B. 2.3mm
Explanation:
The correct answer for the given question is B. 2.3mm. Some aircraft are made are fabricated from aluminium which has plane stain fracture toughness. In the given scenario the plane stain toughness is
Ktc = 40 [ MPa
]
When the Ktc increases the fracture will appear on the aircraft. In this case the maximum crack until the fracture failure is 2.5mm.
Answer:
d. all of these
Explanation:
Electrostatic discharge will generally produce excess voltage in a local area that results in excessive current and excessive heat. It will blast a crater in an MOS device, or melt bond wires, or cause damage of other sorts. In short, MOS devices are subject to damage from "all of these."